当前位置:首页 > 教案教学设计 > 数学教案

三角形角平分线性质

日期:2021-12-17

这是三角形角平分线性质,是优秀的数学教案文章,供老师家长们参考学习。

三角形角平分线性质

三角形角平分线性质第 1 篇

一、教学目标

【知识与技能】

进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

【过程与方法】

通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。

【情感态度与价值观】

通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

二、教学重难点

【重点】

证明角平分线的性质和判定。

【难点】

灵活运用角平分线性质解决问题。

三、教学过程

(一)设置情境问题,搭建探究平台

问题l:习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?

于是,首先证明“三角形的三个内角的角平分线交于一点” .

当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明。

(二)展示思维过程,构建探究平台

已知:如图,设△ABC的角平分线.BM、CN相交于点P,

证明:P点在∠BAC的角平分线上.

证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.

∵BM是△ABC的角平分线,点P在BM上,

∴PD=PE(角平分线上的点到这个角的两边的距离相等).

同理:PE=PF.

∴PD=PF.

∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).

∴△ABC的三条角平分线相交于点P.

在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?

(PD=PE=PF,即这个交点到三角形三边的距离相等.)

于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.

下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理

问题2

如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?

要求学生思考、交流。实况如下:

[生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.

[生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3

教师讲评。

(三)例题讲解

[例1]如图,在△ABC中.AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.

(1)已知CD=4 cm,求AC的长;

(2)求证:AB=AC+CD.

分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4 cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长.第(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE.

(1)解:∵AD是△ABC的角平分线,

∠C=90°,DE⊥AB.

∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).

∵∠AC=∠BC ∴∠B=∠BAC(等边对等角).

∵∠C=90°,

∴∠B=1/2×90°=45°.

∴∠BDE=90°—45°=45°.

∴BE=DE(等角对等边).

在等腰直角三角形BDE中

BD=2DE2.=4 2 cm(勾股定理),

∴AC=BC=CD+BD=(4+42)cm.

(2)证明:由(1)的求解过程可知,

Rt△ACD≌Rt△AED(HL定理)

∴AC=AE.

∵BE=DE=CD,

∴AB=AE+BE=AC+CD.

[例2]已知:如图,P是么AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.

求证:(1)OC=OD;

(2)OP是CD的垂直平分线.

证明:(1)P是∠AOB角平分线上的一点,PC⊥OA,PD⊥OB,

∴PC=PD(角平分线上的点到角两边的距离相等).

在Rt△OPC和Rt△OPD中,

OP=OP,PC=PD,

∴Rt△OPC≌Rt△OPD(HL定理).

∴OC=OD(全等三角形对应边相等).

(2)又OP是∠AOB的角平分线,

∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).

思考:图中还有哪些相等的线段和角呢?

(四)课时小结

本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.

(五)课后作业

习题1.9第1、2题

四、板书设计

角平分线性质

定理:角平分线上的点到这个角两边的距离相等。

定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上。

五、教学反思

三角形角平分线性质第 2 篇

  角平分线的性质

  教学目标

  1.了解角平分线的性质,并运用其解决一些实际问题。

  2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。

  教材分析

  重点:角平分线性质的探索。

  难点:角平分线性质的应用。

  教学方法:

  预学----探究----精导----提升

  教学过程

  一创设问题情境,预学角平分线的性质

  阅读课本P128-P129,并完成预学检测。

  二合作探究

  如图,OC为∠AOB的角平分线,P为OC上任意一点。

  提问:

  1.如何画出∠AOB的平分线?

  2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?

  让学生活动起来,通过测量,比较,得出结论。

  教师鼓励学生大胆猜测,肯定它们的发现。

  归纳:角平分线上任意一点到角两边的距离相等。

  三想一想,巩固角平分线的性质

  三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?

  三做一做,拓展课题

  如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

  让学生充分讨论,鼓励学生自主完成。

  教师归纳:

  因为射线AP是△ABC的外角∠CAE平分线,

  所以PD=PE(角平分线上的点到角两边的距离相等)

  所以PB+PD=PB+PE

  又PB+PE>BE(三角形两边之和大于第三边)

  所以PB+PD>BE

  思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?

  四课堂练习

  课本P130练习

  五小结

  本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的.平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。

  六作业

  1.课本P130习题A组T1,T2

  2.基础训练同步练习。

  3.选作拓展题。

  七课后反思:

  新旧教法对比:新教法更有利于培养学生合作学习的能力。

  学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。

  学案

  学习目标:

  1了解角平分线的性质。

  2并运用角平分线的性质解决一些实际问题。

  预学检测:

  1角平分线上任意一点到 相等。

  2⑴如图,已知∠1=∠2,DE⊥AB,

  DF⊥AC,垂足分别为E、F,则DE____DF.

  ⑵已知DE⊥AB,DF⊥AC,垂足分别

  为E、F,且DE=DF,则∠1_____∠2.

  学点训练:

  1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()

  A.PC=PDB.OC=OD

  C.∠CPO=∠DPOD.OC=PC

  2.如图,△ABC中,∠C=90°,AC=BC,

  AD是∠BAC的平分线,DE⊥AB于E,

  若AC=10cm,则△DBE的周长等于()

  A.10cmB.8cmC.6cmD.9cm

  巩固练习:

  已知:如图,在△ABC中,∠A=90°,AB=AC,

  BD平分∠ABC.求证:BC=AB+AD

  拓展提升:

  如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。

三角形角平分线性质第 3 篇

  教材分析

  1、角的平分线性质是初中阶段几何证明中重要的内容,为证明三角形全等提供更多的方法和条件;

  2、在利用全等三角形的基础上更进一步推理出角的平分线性质;

  3、在这节课中,也能让学生更多的动手作图,练习学生的尺规作图能力,把数学运用到实际生活中去;

  学情分析

  1、学生对数学学习兴趣不够高,基础知识参差不齐,特别是对作图方法难以掌握;

  2、学生对做角的平分线、角平分线到两边的距离作图不够规范,达不到垂直的要求;

  3、学生对如何动手作角平分线和证明角平分线的性质过程感到比较难掌握。

  教学目标

  1、掌握作已知角的平分线的`方法;

  2、掌握角平分线的性质,掌握角平分线性质的推导过程;

  3、角平分线性质的运用。

  教学重点和难点

  重点:角的平分线性质的证明及运用;

  难点:角的平分线性质的探究。

三角形角平分线性质第 4 篇

  教材分析

  1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;

  2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。所以本节内容在初中数学知识体系中起到承上启下的作用。

  学情分析

  1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。

  2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。

  3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等

  教学目标

  1、知识与技能:角平分线定理及定理的证明及应用。

  2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。

  3、情感、态度与价值观:通过自主学习的发展体验获取数学知识的感受。

  教学重点和难点

  教学重点:角平分线的性质定理的探究、证明、运用。

  教学难点:角平分线的作图方法、角平分线的性质的运用。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号