日期:2021-12-18
这是三角形内角和教学片段点评,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
1.教会学生主动探究新识的方法,学会运用转化迁移数学思想。
2.学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一:导入
师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。
师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?
师:还有一个关键字“和”,什么是三角形的内角和?
师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?
师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿?
生:量一量的方法。
师:光量就知道了?还要算一算。
师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。
验证:量角、求和
小组汇报
生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。
生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。
生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。
师:从刚才的交流中,你发现了什么?
生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。
师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号)
师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧!
师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。
师:你们小组每个同学都动脑筋了,谢谢你们。
师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗?
师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。(擦别的)
师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。
师:这几种方法都足以说明三角形的内角和是180度。(结论)
师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么?
请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度?
师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。
师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊?
生:能。
三、迁移和应用
(一).点将台:
下面哪三个角是同一个三角形的内角?
(1)30°、60°、45°、90°
(2)52°、46°、54°、80°
(3)45°、46°、90°、45°
(二)我会算
1.已知∠1,∠2,∠3是三角形的三个内角。
(1)∠1=38°∠2=49°求∠3
(2)∠2=65°∠3=73°求∠1
2.已知∠1和∠2是直角三角形中的两个锐角
(1)∠1=50°求∠2
(2)∠2=48°求∠1
3.已知等腰三角形的一个底角是70°,它的顶角是多少度?
(三).变变变!
(1)一个三角形中,∠1、∠2、∠3。
(2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢?
(3)如果再把∠2剪掉,剩下图形的内角和是多少度呢?
四、全课小结
师:通过一节课的探索,你有什么收获?
生答(略)
我的几点认识:
结合《三角形的内角和》这节课,我对空间与图形这一部分内容,
简单的谈一下自己的认识。
空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的`内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法:
1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。
在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗?
你们怎么知道的?能自己证明么?这样学生从被动学习者的角色,
立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。
2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得
到知识情感价值的升华。
在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。
总之,在教学空间与图形的内容时,一定要让学生看到“图形",
让学生想象"空间”。
教学内容:
义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.
教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备:
多媒体课件、学具。
教学过程:
一、激趣引入
(一)认识三角形内角
1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)
2.请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(二)设疑,激发学生探究新知的心理
1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
学生安要求画三角形.
2.问:有谁画出来啦?
(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!
二、动手操作,探究新知
(一)研究特殊三角形的内角和
1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)
学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)
这个三角形各角的度数。它们的和是多少?
学生回答:是180°。
追问:你是怎样知道的?
生:90°+45°+45°=180°。
把三角形三个内角的度数合起来就叫三角形的内角和。
板题:三角形内角和
2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
90°+60°+30°=180°。
3.从刚才两个三角形内角和的计算中,你发现什么?
这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1.猜一猜。
猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!
2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示
组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.
量一量,完成表格.
三角形的名称
内角和的度数
锐角三角形
直角三角形
(2)小组汇报结果。
请各小组汇报探究结果。
(三)继续探究
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
1.用拼合的方法验证。
小组内完成,活动的要求同上.
拼一拼,完成表格.
三角形的名称
是否可以拼成平角
锐角三角形
直角三角形
对角三角形
2.汇报验证结果。
先验证锐角三角形,我们得出什么结论?
(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
直角三角形的内角和也是180°。
钝角三角形的'内角和还是180°)。
3.课件演示验证结果。
请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
三、解决疑问。
现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
四、应用三角形的内角和解决问题。
1. 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2. 85页做一做:
在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数.
3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)
4.89页16题.思考题
板书设计:
三角形内角和
180° 180° 180°
三角形内角和180°
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
设计思路
数学不应简单地被等同于数学知识的汇集,不应被看作无可怀疑的真理的集合,而应该被看作是人类的一种创造性劳动。数学研究和数学学习,是一个思想实验和“准实验”,需要研究者、学习者的亲身实践和体验。同时,这些经验常常要经过人们的交流、揭示、批驳等合作性劳动。通过开放性探讨,使数学的可靠性建立在“数学共同体”的公共信念之上,取得共识。学生学习的过程是经历了从不合理到合理、不清晰到清晰、不全面到全面的过程,是一个包含有猜测、错误和尝试、证明与反驳、检验与改进的复杂过程。
本课设计充分体现“教师的教为学生的学服务”的理念。尽管三角形的内角和是前人早已发现的知识,但是学生并不是直接去接受前人的知识,而是经过自己的探索实践重新发现,并被自己的实践所验证。教学活动的设计充分激发学生积极主动的学习热情,让学生真正参与新知的探究过程、数学问题的解决过程,让学生成为学习的主人,让他们在猜测、思考、操作、交流与反思中获取知识、发展智力、培养能力、完善人格。
教学目标
1.通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。
2.能根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。
3.激发主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学重点
发现“三角形的内角和是180°”。
教具准备
一副三角尺、视频展示台。
学具准备
每位学生准备量角器、白纸、小剪刀和一副三角尺等。
教学过程
一、导入
出示三个三角形:
师:根据三角形中角的不同,你能说出每个三角形的名称吗?
学生回答三角形的名称后教师追问:你是怎样想的?结合学生的发言引导学生思考:判断钝角三角形、直角三角形只要看三角形中有一个内角是钝角、直角,而判断锐角三角形,要看三个内角是否都是锐角,这是为什么?
学生发言后教师指出:这与三角形的内角有关的问题,让我们似乎感觉到三角形的内角和是一定的。
板书课题:三角形的内角和
[设计说明:新课引入,紧承上节课的学习内容,既是复习,又在问题的探究中引发学生认知冲突,形成“心求通而未得,口欲言而不能”的学习状态。“让我们似乎感觉到……”这是师生直觉思维的外显,教师敏感地抓住稍纵即逝的直觉思维的火花,把学生带到新知学习的门坎边。]
二、展开
1.猜想
师:大家知道三角形的内角和是多少度吗?
学生可能作出“三角形的内角和是180°”的猜想,也可能作出其他不同答案的回答。
2.验证
师:三角形的内角和是180°吗?大家先独立思考,再以小组为单位,设计实验方案,研究三角形三个内角度数的和是多少。
学生小组活动,教师巡视了解学生活动情况,并参与小组讨论,及时指导,鼓励学生设计不同的方案。
3.交流
各小组推选代表交流方案,学生边口述边用视频展示操作过程。
学生交流的实验方案可能有:
(1)画一个三角形,分别量出3个角的度数,并算出这3个角的度数和。学生汇报时可能出现相加后是178°、179°、181°等情况,教师指出:这是测量时因为工具、技术等原因引起的误差。并引导学生观察这些数据,发现数据都在180°左右。
(2)撕下三角形的三个内角,再把三个内角拼在一起,正好拼成一个平角。
(3)折三角形的三个内角,使三个内角正好折在一起。
(4)把一个长方形或正方形沿对角线分成两个三角形。长方形、正方形的4个角都是直角,内角和是360°,一分为二,其中的一个三角形的内角和是180°。
……
在学生交流时,教师引导学生注意考虑实验对象:既要有锐角三角形,又要有直角三角形,还要有钝角三角形。并组织学生对各种方案进行评议。
4.小结
师:通过猜想,再实验验证,我们发现了什么?
板书:三角形的内角和是180°。
[设计说明:三角形的内角和是多少度,对学生来说,并不是全然不知的,学生在本课学习之前往往有意或无意触及“三角形内角和是180°”这一知识,但又是“知其然”而“不知其所以然”。教师把握学生的学习起点与学习心理,设计让学生先猜想再验证的教学思路,从学生已有的知识背景出发,向他们提供了充分的从事教学活动和交流的机会。这样,变对未知领域的探索为对已有认识的验证,学生思考着、讨论着、交流着、感悟着……把枯燥的“三角形内角和是180°”的知识教学演绎得生动而有灵气。在这一过程中,学生对知识的理解所获得的发展是教师单纯讲授、学生指令性操作、被动接受所难以企及的。]
5.应用
(1)出示试一试:在三角形中,∠1=75°,∠2=39°,求∠3的度数。
学生试做,指名板演。
评点板演,说说是怎样想的。
(2)在一个直角三角形中,已知一个锐角是65°,能求出另一个锐角是多少度吗?
学生试做时可能出现下面两种算法:
①180°-90°-65°=25°
②90°-65°=25°
组织讨论、比较两种算法,引导学生自主选择算法。
[设计说明:如何根据三角形中已知角的度数去求未知角的度数,教师充分相信学生的学习能力,放手让学生试做,继而组织学生评议,学生的学习能力又进一步得到提高。]
三、巩固
1.基本练习
(1)在三角形中,已知∠1=110°,∠3=55°,求∠2。
(2)在一个直角三角形中,已知一个锐角是60°,能求出另一个角是多少度吗?如果一个锐角是45°呢?
在解答第2题之后,教师让学生想象这两个直角三角形是什么样?再拿出一副三角尺看一看,想象中的三角形的形状和它们一样吗?
2.操作练习
同桌两人合作,用两块完全一样的三角尺拼成一个三角形,拼成的三角形的内角和是多少度。
学生先动手操作再回答问题。
3.开放练习
学生填写表格。教师组织学生相互批改。批改前讨论批改时注意哪些问题?引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。
[设计说明:练习设计,避免机械的计算操练,力求扎实而质朴,平淡中透新意。基本练习,在解答后教师引导学生想象三角形的形状,这对于发展学生的空间观念是很有好处的。想象之后的实物观察,有助于学生在头脑中建立正确的表象。由两个三角形拼成的一个大三角形的内角和是多少度,教师设计了操作练习,破解学生学习中的误点,加深对“三角形内角和是180°”的理解。开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。]
四、反思
1.交流:这节课有什么收获?印象最深的是什么?
2.解释:一个三角形中最多有几个直角或几个钝角?为什么?
设计说明:通过交流式的回顾引导学生对本课学习的知识进行总结。“解释”,与课始问题情境相呼应,学以致用,让学生亲身感受到数学学习的意义。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号