当前位置:首页 > 教案教学设计 > 数学教案

三角形的边教案总结延伸

日期:2021-12-19

这是三角形的边教案总结延伸,是优秀的数学教案文章,供老师家长们参考学习。

三角形的边教案总结延伸

三角形的边教案总结延伸第 1 篇

教学内容:人教版新课标数学四年级下册P82例3

教学目标:

1.探究、发现三角形任意两边的和大于第三边,初步理解三角形三边的关系。

2.经历操作、发现、应用的过程,渗透数学思想与方法,积累数学活动经验,培养自主探究、合作交流的能力。

3.激发学生探究愿望和兴趣,培养参与数学活动的积极性和严谨的科学态度。

教学重点:探究、发现三角形任意两边的和大于第三边。

教学难点:应用数据发现三角形三边的关系,理解“任意”的含义。

教学设计思路:这节课,精心设计了一系列的数学活动,让学生“在参与中体验,在活动中发展”。课堂上,学生通过自主操作、自主估猜、自主探究、自主迁移,深入认识三角形。通过课上师生之间、生生之间充分交流合作,学生自然、自主、自由地发展。

教学过程:

活动一:引发质疑,提出问题。

1. 出示各种三角形。(这些是什么图形,什么是三角形?)

2. 出示三根纸条红、蓝、黑。

师:我们把这三根纸条看成三条线段,你能把它围成三角形吗?

生代表上来围。师:你们觉得他围得怎么样?生补充围。我真佩服你的细心。纸条要顶点对着顶点,首尾相连,这样才能真正用上了这三根纸条的长度。

3.围三角形比赛,(看来同学们都会围了,现在我们来进行一场比赛吧。从信封拿出纸条1号袋红3cm,蓝6cm,黑11cm。2号袋红3cm,蓝6cm,黑5cm.

4.讨论

为什么有些能围成有些围不成,板书(围不成) (围成)它可能跟什么有关系呢?我们来猜想一下,你说:

生1:可能跟边有关,生2:跟边的长短有关系

师:那么三角形三边长短之间到底有怎样的关系呢?这就是这节课我们要探究的课题:出示课题《三角形三边的关系》。

活动二:探索发现,总结归纳

1.动手操作:

师:刚才我们用蓝6㎝,红3㎝,黑11㎝,不能围成三角形,请不能围成三角形的同学上来展示(看来不是操作不当,到底是什么原因呢?

生:11厘米太长了,那两根太短了。

师:上面这两根和下面这根比,你发现了什么?

生:我发现两根小棒之和小于第三根

师:从你的回答,我听到了智慧的声音,以前我们总是考虑一根和另一根去比长,而现在却考虑用两根的和去与第三根进行比较,真了不起!

能不能用一个算式来表示呢?

生;3+6﹤11

师:两边的和小于第三边不能围成三角形,两边的和与第三边有怎样的关系就可以围成三角形呢?

生:两边的和大于第三边。

生:两边的和等于第三边

(过渡)同学们有不同的猜想,生活当中许多重大发现都从猜想开始,但是光猜还不行,我们还得从实践中加以验证,接下来我们从探究验证我们的想法,我们把3cm和6cm两边的和不变缩短黑边的长度,为了便于研究,我们移到整厘米,注意刻度线对刻度线。一边围一边想,这两个结论是否正确,找到规律就可以不用每个刻度都要试,即动手又动脑,才是高效的探究。现在小组一起,可分工不同移动的刻度,要有一个同学作记录。(活动教师巡视指导)

2.汇报交流

教师:下面请同学们来汇报一下你的操作结果。

请不同的学生汇报,教师在课件中输入数据和结果。

第二层:猜想,初步得出三角形边的性质。

师:长度是9厘米时,有争议,图形有些特殊我们重点研究它,请不能围成的同学上来说说不能围成的原因。

生:只要将纸条3cm或6cm稍微抬高一些,纸条3cm和6cm就不能首尾相连了。师:利用课件演示。问能围成的同学此刻的想法。(善于思考能接纳同学的建议很会学习)

生:两边之和大于第三边时能围成,用3cm、6cm和7cm展示。?

师:这个猜想对不对呢?这需要进行验证,看看这些能围成三角形的边是不是具备这样的关系?3+6﹥7还有谁也得出这样的结论?指名说。

师:是不是两边的和大于第三边就一定能围成三角形呢?我们用不能围成和围成对比看看。有谁改变主意了?

第三层:引发矛盾,突破难点

生:用3cm、6cm、11cm不能围成三角形,它也有两条边的和大于第三边板书(3+11﹥6)

师:那这个结论正不正确,除了这两个算式还能写出第三个算试吗?

生:6+11﹥3 围成的呢,3+7﹥6 7+6﹥3.

师:还有别的算式吗?(没有)在围成三角形当中每两边的和都大于第三边,而不能围成的只有两组两边的和大于第三边。在数学中,每两边的和都大于第三边的,叫做任意两边的和大于第三边(板书)

师:什么叫任意?

师:下面我们利用这个结论,再来验证一下3cm、6cm、4cm,是不是都具备这样的关系?

第五层:找出判断能不能围成的简捷方法。

师:在判断能不能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?在小组内想一想,说一说;引导学生发现,因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了,所以呢?只要把较小的两条边,加起来与第三边进行判断,就可以了。

活动三,结合实际,学会运用。

师:大家不能只看几加3大于8,还要从另一个角度看8加3也要大于几。

三角形的边教案总结延伸第 2 篇

  三角形的边一课是在学生知道了三角形有三条边、三个角、三个顶点以及三角形具有稳定性的基础上学习的,通过前面的学习,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触。因此,教学中,我让学生在观察、感知的基础上,动手操作,摆一摆,比一比,看一看,想一想,分组讨论、合作学习,运用多媒体课件辅助教学,老师恰当点拨,适时引导。

  本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从4根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?这样很自然地就导入了新课,为后面的新课做了铺垫。二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。教学中,我设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。

  评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决问题。新授课中的小组合作“摆三角形”,学生分工明确,参与性强,而练习中的小组合作却能集众人智慧,全面考虑,在有限的时间内完成学习任务。

  对这堂课的教学,我也有不少遗憾之处。

  1、教学设计不够精巧,没有波澜,对学生积极性的调动还是不够。对教材内容的把握是过分拘泥于教材。

  2、学习小组内的合作较好,但是组间竞争意识不强,小组加分过于机械,没有充分调动学生竞争的积极性。

  改进:在适当的课中多多运用小组学习,不要机械的运用小组,为了应用而应用。在有的课堂上如果运用小组确实能达到很好的效果就用,如果效果不明显时就可以不用,对于小组要灵活运用。

三角形的边教案总结延伸第 3 篇

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是三角形三边关系定理及推论。这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。

  本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误。二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方。

  2、教法建议

  没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的.背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示。具体说明如下:

  (1)强化能力

  新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例。

  通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力

  (2)主动获取

  在得出三角形三条边关系定理过程当中,针对基础比较好的学生,让学生考虑回忆第

  一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来。

  (3)激荡思维

  由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论。在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法。这里,学生若感到困难,教师可适当做提示。方法3:已知线段 , ( ),若第三条线段c满足 -

  (4)加深理解

  进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论。从过程当中让学生体味到数学造化之神奇。也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据。

  整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展。

  教学目标:

  (1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;

  (2)弄清三角形按边的相等关系的分类;

  (3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;

  (4)通过三角形三边关系定理的学习,培养学生转化的能力;

  (5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系。

  教学重点:三角形三边关系定理及推论

  教学难点:三角形按边分类及利用三角形三边关系解题

  教学用具:直尺、微机

  教学方法:谈话、探究式

  教学过程:

  1、阅读新课,回答问题

  先让学生阅读教材的第一部分,然后回答下列问题:

  (1)这一部分教材中的数学概念有哪些?(指出来并给予解释)

  (2)等腰三角形与等边三角形有什么关系?

  估计有的学生可能把等腰三角形和等边三角形看成独立的两类。

  (3)写出三角形按边的相等关系分类的情况。

  教师最后板书给出。

  (要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)

  2、发现并推导出三边关系定理

  问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)

  问题2:你能解释上述结果的原因吗?

  问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?

  定理:三角形两边的和大于第三边

  (发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)

  3、导出三边关系定理的推论及其它两种方法

  由前面得到了判断所给三条线段能否组成三角形的一个依据。那么是否还有其它方法呢?请同学们在定理的基础上来找:

  估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述。

  推论:三角形两边的差小于第三边

  (给每一个学生表现个人数学语言表达才能的机会)

  能否简化上面定理及推论?从而得到如下两种判定方法:

  (1)、已知线段 , ( ),若第三条线段c满足 -

  4、三角形三边关系定理及推论的应用

  例1 判断题:(出示投影)

  (1)等边三角形是等腰三角形

  (2)三角形可分为不等边三角形、等腰三角形和等边三角形

  (3)已知三线段 满足 ,那么 为边可构成三角形

  (4)等腰三角形的腰比底长

  (本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)

  (本例要求学生说出解题思路,教师点到为止)

  例3 一个等腰三角形的周长为18 。

  (1) 已知腰长是底边长的2倍,求各边长。

  (2) 其中一边长4 ,求其他两边长。

  这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善。

  (数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)

  例4 草原上有4口油井,位于四边形ABCD的4个顶点,

  如图1现在要建一个维修站H,试问H建在何处,

  才能使它到4口油井的距离HA+HB+HC+HD为最小,

  说明理由。

  本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案。

  5、小结

  本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:

  (1)判断三条已知线段能否组成三角形

  采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能。

  (2)确定三角形第三边的取值范围

  两边之差<第三边<两边之和

  若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业

  a。 书面作业P41#8、9

  b。 思考题:1、在四边形ABCD中,AC与BD相交于P,求证:

  (AB+BC+CD+AD)<AC+BD<AB+BC+CD+AD

  2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)

  板书设计:

三角形的边教案总结延伸第 4 篇

本节课的教学借助于已有的知识和生活经验,通过自主探究与合作交流的方式进行.具体的教学过程是先对大量的生活图片进行观察、分析、思考,在获得对三角形大量的'感性认识的基础上,归纳出三角形的特点及其有关概念.在此基础上,同学们再分组进行试验操作活动,通过操作活动进一步对三角形进行理性思考,通过观察、测量、分析、讨论等方式探究并归纳出三角形的三边关系.最后同学们可再借助于例题和习题的分析、思考来巩固本节课所学的新知识和数学思想方法,从而达到提升自身的数学思维能力及数学素养的目的。

[讲授效果反思]

本节课通过图片的展示、试验操作及分组讨论等活动的开展,有效地激发了学生学习的积极性,使学生理解并掌握所学的知识,取得了较好的教学效果.但从课堂教学的情况来看,由于初次接触线段的不等关系,部分学生对线段不等关系问题的解决感到困难,不知道如何去思考和解决问题,在今后教学中需要进一步加强巩固和训练。

[师生互动反思]

例题教学时,可以让学生畅所欲言,互相补充,以此培养学生用数学的眼光观察和解释一些现象。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号