日期:2022-01-02
这是从分数到分式教案,是优秀的数学教案文章,供老师家长们参考学习。
【考点透视】
1.了解分式的概念,能求出分式值为零时字母的值,知道分式无意义的条件
2.会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除及混合运算与分式的化简求值。 3.能正确求出可化为一元一次方程的分式方程的根,能结合实例解释解分式时产生增根的原因,能结合现实情境列分式方程解决简单的实际问题。
【知识梳理】
1.分式的概念:分式: 2.弄清分式有意义,无意义和值为零的条件
分式有意义的条件是分母不为零;无意义的条件是分母为零;值为零的条件是分子为零且分母不为零,弄懂这几个条件是做分式题很重要的一点.
3.分式基本性质的.灵活应用
分式的基本性质:
分式的约分: 分式的通分: 最简公分母: (注意: 利用分式的基本性质熟练进行约分和通分,这是分式运算的基础,利用分式的基本性质时,要注意分子、分母同乘以和除以不为零的整式.) 4.分式的运算
(1)分式的加减法法则
(2)分式的乘除法法则 (3)分式的乘方
(4)分式的混合运算
分式的四则运算主要出现在化简中,与通分、约分、分式的基本性质联合,要保证最后结果为最简分式.
5. 分式方程
(1)解分式方程:步骤 (2)列分式方程解应用题
6. 条件分式求值的常用技巧 (1)参数法:当已知条件形如化简的分式时,通常设代入所求代数式。 (2)整体代换法 像已知把1x?
1x?1y?3,求
2x?3xy?2yx?2xy?y
xa?yb?xazc?yb?zc
,所要求值的代数式是一个含x、y、z、a、b、c而又不易
?k(k就是我们常说的参数),然后将其变形为x?ka,y?kb,z?kc
的值这样的问题, 合化
简
所求
代
数式
?
已1y
知条件变换成适的形式
?
,如35
把
?3化为x?y??3xy,代入
2x?3xy?2yx?2xy?y
中,得
(2x?y)?3xy(x?y)?2xy
?6xy?3xy?3xy?2xy
,这样就
达到整体代入、化简求值的目的。 7.裂项法
裂项法即把一项化为两项,使计算得以顺利进行。 常用裂项有:
1n?(n?1)
?1n?
1
;
1
?1(
1
?
12n?1
).
n?1(2n?1)(2n?1)22n?1
【考题例析】
1.识别分式的概念
例1. ( 2011重庆江津)下列式子是分式的是( ) A.
x2
B.
xx?1
C.
x2
?y D.
x3
例2、如果分式
|x|-1x?3x?2
2
的值为零,那么x等于( )
A.-1 B.1 C.-1或1 D.1或2 例3. (2011浙江杭州)已知分式
x?3x?5x?a
2
,当x=2时,分式无意义,则a= ,当a
时,使分式无意义的x的值共有 个. 2.分式的基本性质的识别 例2、下列各式与
x?yx?y
相等的是( )
A.
(x?y)?5(x?y)?5
; B.
2x?y2x?y
; C.
(x?y)x?y
2
2
2
(x?y) D.
x?yx?y
2
222
点评:分式的基本性质是一切分式运算的基础,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式.
3.化简求值题 例3、(1)已知a+
1a
=5, (2)已知
x?4x?3x?1
x
2
2
=0,
则
a?a?1
a
2
42
=________. 先化简后求
m?nmn
2
2
x?3
?
93?x
的值.
例4. (2011 江苏南通,)设m>n>0,m+n=4mn,则A.
1m
22
的值等于
D. 3
2
例5. (2011 四川乐山)若m为正实数,且m?4.分式方程的解法及应用 解下列分式方程: 例1.(1)
xx?2
?
6x?2
?3,则m?
1m
2
?1 (2)
2x?1
?
3x?1
?
6x?1
2
例2.用换元法解方程x2?
1x
2
?x?
1x
?4,可设y?x?
1x
,则原方程可化为关于y的方程
是 . 【巩固练习】 一.选择题 1、函数y=
1x?1
2
中自变量x的取值范围是( ).A.x≠-1 B.x>-1 C.x≠1 D.x≠0
2、若分式
x?9x?4x?3a
b
2
2
的值为零,则x的值为( ).A.3 B.3或-3 C.-3 D.0
3、化简
a?b
?
a(a?b)
的结果是( ).A.
a?ba
B.
a?ba
C.
b?aa
D.a+b
4、当分式
|x|?3x?3
2
的值为零时,x的值为( ).A.0 B.3 C.-3 D.±3
mm?3
mm?3
mm?3
m3?m
5、化简
m?3m9?m
2
的结果是( )A. B.- C. D.
6、 将分式
xyx?y
中的x,y都扩大2倍,分式的值 ( )
A.扩大4倍 B.扩大2倍 C.不变 D.缩小2 7、化简 A.
12m?9
2
2
+
2m?3
的结果是( )
2m?3
m?6m?9
B. C.
2m?3
D.
2m?9m?9
2
二.解答题 1.计算:
3.化简:(
4.(2011重庆江津)先化简,再求值:
【中考链接】
11?x
?
x1?x
. .先化简,再求值:
x?1x?1
2
+x(1+
1x
),其中
-1.
aa?1
?
2a?1
1
)÷(1-
1a?1
). 4.化简:m+n-
(m?n)m?n
2
.
x?1x?2
2
?(
1x?2
?1),其中x?
13
·
1.(2010.潍坊中考)分式方程
xx?5
?
x?4x?6
的解是_________.
2.(2011江苏泰州)(a﹣b﹢
b
2
a?ba?ba
)?
a?ba
2ab?b
a
2
3. ((2011山东济宁)计算:
?(a?)
ab
ba
4.(2011·山西)已知a-6a+9与│b-1│互为相反数,则式子(
1x
1y
66x?3
2
?)÷(a+b)的值为____.
5.(2011·天津)已知
?,则分式
60x
2x?3xy?2yx?2xy?y
的值为________.
6. (2012.潍坊)方程?
a
2
?0的根是 .
7、(2012吴中区一模)化简 (A)
1a?1
a?1
?a?1的结果是( )
(B)-
1a?1
(C)
3a?1
2a?1a?1
(D)
2
a?a?1a?1
2
8. (2012.辽宁营口市)先化简: 作为a的值代入求值.
9.(2011.呼和浩特)若
Ax?5
?
Bx?2
(?a?1)?
a?4a?4
a?1
,并从0,?1,2中选一个合适的数
?
5x?4x?3x?10
2
,试求A、B的值.
10.(2011·广东)如图1-16-1小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按照到校,王老师每天骑自行车接小明上学.?已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车速度各是多少?
一、教材分析
分式的意义的说课稿
1.地位和作用
“分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标 (1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义:分式与除法的关系;
(2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。
二、教学方法与学法
本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.设问激疑,以旧探新,类比联想,形成概念
教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示:
1. 一段绳子长3米,把它平均分成4份,则每份长是多少?
2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶 小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?
学生通过运算、比较,可以发现 、 是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。
接着,教师在此基础上引导学生类比联想,给出分式的概念。即
两个数 , 相除可以用“ ”或“ ”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“ ”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么 叫做分式。如:分母中都含有字母,都是分式。
(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
在教师与学生共同得到分式的概念后,紧接着教师给出:
例1:现有以下各式:2, , , , , , ,请同学们任取两个进行组合,使组合后的代数式为分式。
在这里我们可以发现答案并不唯一,通过对分式的概念的理解,让学生亲自动手,亲身体验,展开想象的翅膀,组合成的代数式将一个个的呈现在我们眼前,激发学生兴趣,调动学生学习的主动性。然后教师通过学生所给出的答案加以分析,指出类似 这种形式的,虽然也有分母,但分母中不含有字母,所以不是分式,而是整式。指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
根据分式的概念,我们还可以看到分数线具有双重意义:(1)表示括号;(2)表示除号。所以为了让学生体会到这一点,教师给出:
例2:用分式表示下列各式:
(1) ; (2) ; (3) ; (4) ;
2.观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
例3:当 取什么值时,分式: 有意义?
学生根据之前的结论,得出只要分母 ,即 时,这个分式有意义。
教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式有意义?
(1) ; (2) ; (3) ; (4)
讲到这里,教师又乘胜追击,问学生:
例4:那么以上各分式,当 取什么值时,分式无意义?
那么我们说只要分母为零时,这个分式就无意义。请学生给出每一题的正确结论。
3、变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。
教师问学生:
例5:同样的,以上各分式,当 取什么值时,分式的值为零?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,所以教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(3)(4)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。
4.反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?
教师整理学生的发言,归纳小结:
(1)整式和分式统称为有理式
(2)分式的概念:两个整式A,B相除时,可以表示为 的形式,如果分母B中含有字母,那么叫做分式。
(3)要分式有意义,也只要使分母不为零
(4)当分母为零时,分式就无意义
(5)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的.值不等于零。
(6) 是圆周率,它代表的是一个常数。
(7)在开放题中,强调根据整式、分式的定义进行编制。
5. 分层作业
(1)练习册15.1
(2) 取何值时,分式 的值为负数?
四.评价分析
1.学生在学习新的数学概念时,新的信息对学生来讲基本上是陌生的,零碎的和彼此孤立的,在课堂教学中,教师的任务就是为学生的发现、创造提供自由广阔的天地,就是在于引导学生探索获得知识、技能的途径和方法。因此,利用旧知探索新知,逐步深入,引发学生思维冲突,将学生带入发现概念的最近发展区。
2.在教学过程中,很多学生误认为由旧知识获得新知识后,对新知识的理解就已经到位了,这时需要教师引导学生探求新旧知识间的深层联系和实质区别,去揭示这种内在的或隐藏的联系与区别,纠正其对概念的表面性和片面性的理解,在头脑中获得新的痕迹。
3.小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。
学习目标分析
一、知识与技能:1、了解考纲,会进行简单的分式加、减、 乘、除运算。2、对应考纲的要求来演练。重要的是要掌握好各考点的知识和解题方法,轻松应试。二、数学思考:1、培养学生归纳的思想。2、培养学生的解题习惯,规范解题。三、解决问题:教会学生在解题时一定要仔细审题,先判断题目的类型,再抓住关键点,自由,灵活选择解法。四、情感与态度:通过使用微课教学,培养学生学习数学的兴趣;学生学有所用,体验成功的快乐;自由,灵活选择解法,在教学中渗透社会主义核心价值观。
学情分析
前需知识掌握情况:(1)了解学生利用微课教学的经验与兴趣。(2)通过练习了解学生因式分解的掌握情况。(3)要使分式有意义,必须满足什么条件?(4)利用分式的基本性质进行约分和通分的方法。
对微课的认识:学生在其他课堂上略有接触过微课,我主要把重点内容制作微课,更好地调动学生的积极性,也为了观察学生的听讲精神,及时地提醒分心的学生,提高课堂效率。
学生特征分析
学习态度:微课教学,打破传统教学,把信息化引进课堂,让学生自主学习,发现问题,分析归纳,在老师引领下,提高学生自主学习的能力。
学习风格:把微课引入课堂,传统教学转变信息化教学,培养学生自主学习,营造一种和谐的学习氛围,让学生乐学。
微课用于学生学习的教学策略分析
微课用于学生学习的目的:通过使用微课教学,培养学生学习数学的兴趣。学生喜欢信息化教学,带着问题,更能全神贯注地看微课,逐步培养学生归纳能力,也提高学生在课堂的自主能力和学习习惯的养成。
微课用于学生学习的时机:由于时间紧,学生基础薄弱,分式的运算出错问题较为严重,针对实际情况,我把重点内容分式的化简制作微课,在课中间使用微课,既可以改变沉闷的课堂气氛,提高学生的学生积极性,主动性,又能更好分散难点,突出重点,有的放矢,以达到较好的教学效果。
微课用于学生学习的方式:微课教学,我让学生先自主学习,再根据问题,小组讨论,归纳解题方法。
微课用于学生学习的教学片段设计
教学环节 教师活动 学生活动 对应的教学目标
课前小测 按《分式的运算》学情分析调查问卷准备 5分钟完成,了解学情 (1)了解学生利用微课教学的经验与兴趣。(2)通过练习了解学生因式分解的掌握情况。(3)复习实数的运算顺序和灵活运用运算律,强调分式的运算也和实数相同
微课教学 设计问题,让学生带着问题放映微课,观察学生的自主学习的情况,从分组讨论的解题方法中,为学生理清思路,强调应注意的问题。 带着问题,观看微课,之后分组讨论,让学生回答他们归纳的解题方法。 1、对应考纲的要求来演练。重要的是要掌握好各考点的知识和解题方法,轻松应试。2、培养学生归纳的思想。在解题时一定要仔细审题,先判断题目的类型,再抓住关键点,自由,灵活选择解法。
反馈练习 设计配套练习,让学生当堂完成。 学生完成时,老师巡视,发现问题,及时纠正。 培养学生的解题习惯,规范解题。自由,灵活选择解法。
微课用于学生学习的组织与管理
如何让学生获得微课资源:把微课分享到班级的Q群或微信群,班级的电脑桌面,让学生拷贝。
如何确保学生学习了微课:让学生带着问题观看微课,再分组讨论,提问学生,归纳解题方法。
如何评价微课学习效果:让学生完成配套练习,及时反馈,从巡视中,发现问题,及时纠正。
本周初中部同课异构的题目是《分式》,通过同台讲解,碰撞交流,最后大家达成共识,形成了一篇优秀的教学设计。
《分式》教学设计
一.教学目标
(1)知识与技能目标:了解分式概念,明确分式和整式的区别,学会判断分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标: 经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并感受数学学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感、态度与价值观目标:通过丰富的数学活动,获得成功经验,体验数学活动充满着探索和创造,感受分式模型。
二.教学重难点
重点:了解分式的概念,明确分式和整式的区别。
难点:判断分式有无意义的条件,用分式描述数量关系。
三.教学过程
(一)创设情境,以旧引新
问题1:给大家猜个谜语,谜面是“七上八下”,打一个数。
教材解读:《分式》教学设计
这节课我们就一起来学习这种分母中含有字母的式子——分式。
【设计意图:借助谜语激发学生的学习兴趣,由分数的意义迁移得出7/x,自然引入本课题:分式。】
(二)自主探究,领略新知
教材解读:《分式》教学设计
【设计意图:从贴近学生生活的实际情境出发,让学生体会分式也是描述现实生活的一类数学模型。学生独立完成并口头回答,教师板书答案。】
2.对前面找到的不是整式的代数式,请同学们以小组为单位讨论以下4个问题。
(1)这些式子形式上有什么共同特征?
(2)它们与整式有什么区别?
(3)这些式子与我们以前学过的 类似,所不。
(4)什么是分式?
教材解读:《分式》教学设计
3.让学生根据分式的概念,写出一个具有实际背景意义的分式。
【设计意图:进一步体会分式这一数学模型。完成后,学生在组内交流, 3—4名学生展示成果。】
教材解读:《分式》教学设计
【设计意图:学生独立完成,培养独立分析、解决问题的能力。可以先让中下游学生口答结果,争取出现争议,学生辩解,最后统一思路。】
教材解读:《分式》教学设计
【设计意图:鼓励学生大胆尝试,敢于发表自己的观点,做到“我的课堂我主宰”。】
(三) 盘点收获,纳入智囊
让学生自己梳理本课的内容,盘点收获成果,纳入自己的智慧背囊。
【设计意图:自己归纳总结,班内共享】
(四)巩固训练,自我提高
这节课我们从实际问题中得出了分式的概念,共同探讨了分式成立和分式值为0的条件,相信同学们学得很棒,是不是很想展示一下自己的收获成果?请同学们完成训练。
1.教材随堂练习。
教材解读:《分式》教学设计
【设计意图:数学来源于生活,又作用于生活; 知识拓展,注意学生语言的表述】
(五)布置作业
教学反思
回顾分式整节课的设计,主要着力于以下三个方面:
1.关于教材处理:认真处理教材,目的只有一个——为学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:
(1)通过“翻译代数式”、“赋予分式实际意义”等活动,激发兴趣,吸引学生参与活动;
(2)通过“举例子”等活动,鼓励学生主动参与活动;
(3)通过“应用新知”这个环节,促进学生参与活动。
2.关于教与学方法的选择:基于教材特点和学情,本节课宜采用“引导—发现教学法”,通过“问题情境—建立模型—解释、应用、拓展与反思”的模式展开教学。《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”
为能更多地向学生提供从事数学活动的机会,将本节课设计为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。设计中始终关注:如何精心组织活动,让学生在丰富的活动中探索、交流与创新,因此选择“引导—发现教学法”,具体做法如下:
(1)用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;
(2)加强应用性,通过“应用新知”、“深化拓展”两个环节,密切分式与现实生活及其他学科的联系,发展数学应用意识,突出分式的模型思想。
3.关于评价:在活动中注重对学生进行即兴评价,注重多维评价:合作交流的意识与能力、数学思维能力与发展水平、发现问题和解决问题的能力。
教材解读:《分式》教学设计
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号