当前位置:首页 > 教案教学设计 > 数学教案

分式方程的实际应用

日期:2022-01-03

这是分式方程的实际应用,是优秀的数学教案文章,供老师家长们参考学习。

分式方程的实际应用

本小节是通过回顾章引言中的实际问题导入分式方程的概念,进而探索分式方程的解法. 由于已经学习过分式概念,教材直接列出方程并据此给出分式方程的概念,同时说明分式方程与整式方程的区别与联系.接着就给出一个“思考”---如何解分式方程?由于学生已经学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路已经比较熟悉.只需引导学生回顾整式方程的概念及解法,将分式方程转化成整式方程即可顺利求解,分式方程与整式方程的区别在于分式方程的未知数在分母中,而整式方程的未知数不在分母中.需要消除这种不同,可以通过在分式方程的两边乘最简公分母,这也是将分式方程化成整式方程的关键步骤. 通过对章引言问题的顺利解决,教材通过“归纳”栏目,给出解分式方程的基本思路及具体做法. 解分式方程与解整式方程的两个明显的区别就是:(1)一般来说,解分式方程时要通过去分母先转化为整式方程,这里的去分母过程不能保证新方程与原方程同解;(2)通过去分母得出的整式方程的解必须经过检验,当这个解使得分式方程的分母不为0时,它才是分式方程的解. 教材接下来给出一个具体分式方程.在利用前面得出的通过“去分母”将分式方程化为整式方程后,得出的整式方程的解使分式方程中相应的分式无意义,教材适时给出了一个“思考”栏目,这个“思考”栏目提出的问题与检验的必要性以及如何检验有密切的关系.教材对增根的理论并未进行深入的讨论,而是通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下会产生增根,然后归纳出检验增根的方法,值得注意的是,该方法是在解去分母后的整式方程的过程无误,所得解确实是整式方程的解的情况下适用的方法. 本节中的例1和例2是简单的解分式方程的题,通过它们可以使学生熟练掌握解分式方程的步骤及检验方法.其中例1是有解的情形,例2是无解的情形,由于本节只讨论可以化为一元一次方程(解的个数不超过1)的分式方程的解法,对于将分式方程化为整式方程后有多个解,那么对这些解都应进行检验,可能其中一些解是原分式方程的解,另一些是增根. 教材最后用框图形式给出了解分式方程的一般步骤. 本节课的教学重点是,解分式方程的基本方法和一般步骤. 本节课的教学难点是,了解用去分母的方法解分式方程产生增根的原因.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号