当前位置:首页 > 教案教学设计 > 数学教案

分数乘法教学反思六年级

日期:2022-01-04

这是分数乘法教学反思六年级,是优秀的数学教案文章,供老师家长们参考学习。

分数乘法教学反思六年级

分数乘法教学反思六年级第 1 篇

教学目标:

1、理解并掌握分式的基本性质及能运用分式的基本性质进行约分.

2、理解最简分式的概念,并对约分的最后结果进行检验.

3、在分式的基本性质的探究过程中,领悟类比的数学思想;再次感受数与式之间的内在联系与区别.

教学重点和难点:

重点:理解并掌握分式的基本性质.

难点:分子与分母为多项式的分式的化简.

教学过程:

分式基本性质的概念 问1:六年级时学过分数的基本性质,什么是分数的基本性质? (板书:分数的基本性质)答:分数的分子和分母都乘以(或除以)同一个不为零的数,分数的值不变. 师用字母表示为:

问2:分数基本性质的作用有哪些? 答:可以进行分数的约分、通分. (板书): 约分 通分 追问:1)什么是约分?答:把一个分数的分子、分母中公因数约去的过程叫约分. 2)约分的最后结果是什么?答:最简分数 (板书:最简分数) 3) 什么是最简分数?答:分数的分子、分母互素的分数. 4)通分的目的是什么?预设:进行分数的加减运算. (板书: 分数的加减运算)

问3:我们将“数”拓展到“式” (板书:数 式),类似的,分式也有这样的性质.对照分数的基本性质,能否尝试改写成分式的基本性质? 学生尝试概括:分式的分子与分母同时乘以(或除以)一个不为零的整式,分式的值不变 请同学试着用数学语言描述一下? ==(其中M、N为整式,且) 要强调B≠0,M≠0,N≠0 . 提问:与前面的分数有何区别和联系?答:前者是数,而后者是式. 问4:分式基本性质的作用有哪些? (板书): 约分 通分 追问:1)什么是分式的约分?答:把一个分式的分子与分母中相同的因式约去的过程,叫做约分. 2)约分的最后结果是什么?答:最简分式. (板书:最简分式) 3) 什么是最简分式?答:如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式. 4)通分的目的是什么?答:进行分式的加减运算 (板书: 分式的加减运算) 最终形成知识结构图: 二、分式基本性质的运用 如何运用分式的基本性质进行约分呢? 1、例题1 化简:;

问1:怎么化简?

问2:怎么约? 答:约分.直接约分.可以先约去系数的最大公因数,再约去相同字母的最低次幂. 师说明:通常情况分式的分母默认不为零.

问3:是不是最简分式?答:是的. ;问1:怎么化简?答:预设学生会将进行约分. 师引导:是在因式的前提下进行约分,像这样将相同字母约分可以吗? 答:不可以. 问2:怎么约?先将分母因式分解,约去公因式x+y, 略解:原某某 问3:是不是最简分式?答:是 .问1:怎么化简? 问2:怎么约? 答:先将多项式因式分解,约去公因式x, 解:原某某 问3:是不是最简分式?答:是 归纳:分式的分子、分母都是单项式,如何约分? 预设:如果分式的分子和分母都是单项式,约分时约去它们系数的最大公因数,相同因式的最低次幂. 分式的分子、分母有多项式时,如何约分? 答:如果分子,分母是多项式,应先分解因式,再约分. 2、辨析: (1); (2); (3); (4); (5). 小结:化简分式时,如果分式的分子和分母都是单项式,约分时约去它们系数的最大公因数,相同因式的最低次幂.如果分子,分母是多项式,应先分解因式,再约分. 练习:P72/1、2、3 3、例2:化简 (1); (2); (3). 【小结】化简分式时要将分式化为最简分式或整式. 练习:P73/4 三、师生小结 通过本课的探讨学习,你学到了哪些新知识? 1、分式的基本性质 2、分式的约分方法: 如果分式的分子和分母都是单项式,约分时约去它们系数的最大公因数,相同因式的最低次幂.如果分子,分母是多项式,应先分解因式,再约分. 化简分式时要将分式化为最简分式或整式. 渗透类比的数学思想. 四、布置作业 练习册 习题10.2

分数乘法教学反思六年级第 2 篇

  下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的`基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式 中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  六、教学设计说明

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

分数乘法教学反思六年级第 3 篇

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的`基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式 中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  六、教学设计说明

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

分数乘法教学反思六年级第 4 篇

  分数的基本性质是约分和通分的基础。而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。本节课与传统的概念教学相比,有很大的改进,体现了新的教学理念,主要表现在以下几个方面:

  一、构建新的课堂教学模式。

  传统的教学往往只重视对结论的记忆和模仿,而这节课老师把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。在课堂上,老师给学生提供了一组组材料,让学生去观察、感悟,并且进行大胆猜想,进而又进行了验证。当学生验证出分数的'分子、分母都乘或除以同一个数,分数的大小不变之后,教师并没有立即让学生去归纳,而是让学生用自己感知的这一规律去写一组相等的分数,这样可加深对分数的基本性质的理解,为后面归纳分数的基本性质奠定了基础。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。

  二、培养学生勇于猜想,大胆创新的精神。

  牛顿曾说:“没有大胆的猜想,就做不出伟大的发现。”因此,我们在日常教学中,应鼓励学生进行大胆猜想,从而发展数学思维。本节课,当老师引导学生观察几组分数的分子、分母变化情况后,先后鼓励学生猜测:分子、分母都乘同一个数,分数的大小不变;分子、分母都除以同一个数,分数的大小不变,以引起学生探究的兴趣。

  三、为学生提供了大量数学活动的机会,让学生真正成为学习的主人。

  《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,教师先引导学生观察几组分数的分子、分母发生了怎样的变化?分数的大小有没有变化?然后在猜测与动手操作验证中,逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号