日期:2022-01-07
这是分数加减混合运算板书,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
1、 从学生原有知识经验出发,引导学生通过主动探索、合作交流的方式掌握带分数加、减法的计算方法,能正确、合理地进行计算。
2、 在探索学习的过程中,培养学生观察、比较、归纳、概括和表述的能力,渗透转化的数学思想。
3、 使学生在学习过程中能获得情感体验,感受到探索成功的喜悦。
教学重点:
带分数加减法的计算方法。
教学难点:
理解的带分数加减法的算理。
教学过程:
一、了解学生的学习经验
1、我们已学过了哪些分数加减法?(板书:分数加减法)
(学生回答:同分母加减法,异分母加减法,1减真分数……)
2、根据你的学习经验想一想:接下去我们还会研究哪些分数加减法?
(学生叙述,教师调控)
设计意图:学生在前面的学习中已经掌握了同分母加减法,异分母加减法。通过复习旧知引新,激活了学生的知识储备,促使学生饶有兴趣地进入主动学习的状态。
3、今天我们就来研究带分数的加减法。(补充课题:带分数加减法)
二、研究算法,探索算理
1、 你能举几个带分数吗?这几个数能组成哪些加减法算式?
(学生举例,教师板演,注意分类。黑板上应有一道同分母的加法、一道同分母减法、一道异分母加法、与一道异分母减法)
2、请大家从这四题中选一道加法与一道减法进行计算,边算边思考下列两个问题
(1)是怎样计算带分数加减法的?
(2)能找到其他不同的方法吗?
(教师巡视,让不同方法的学生板演)
设计意图:给学生充分自由的空间让学生用自己喜欢的方法进行计算,充分调动了学生已有的学习经验。
3、组织学生讨论:你觉得哪种方法好?为什么要这样计算?
(让学生说清楚算法与算理,对板演的不同方法进行对比,得出优化的方法;注意发现有没有“将分数化成小数来计算”的方法出现,如有的话,也可集体认识、辨析一下这样的方法。)
设计意图:在这个提倡和促进了生生互动、师生互动的环节,所有的学生都能够在小组活动中虚心的倾听别人的学习经验中有了针对自己针对不同学习内容的不同的收获,而教师充分参与活动,做活动中学生们的支持者、参与者。
4、 那么你觉得带分数加减法应该怎样进行计算呢?
(带分数相加减,整数部分和分数部分分别相加减,再把所得的数合并起来。)
设计意图:培养学生严密的逻辑思维能力和归纳总结能力及语言表达能力(转载 于:Www.dyHzdL.cn : 小学五年级数学《分数加减法》教案范例三篇)。
三、巩固算理,熟练算法
1、计算。
2、生活应用。
设计意图:巩固所学概念,发现和弥补教学中的遗漏和不足,强化基本技能训练,培养学生良好的学习习惯和品质。
四、小结
学了今天这节课,大家有什么收获吗?
五、课后延伸(机动)
教学目标
1.知识和技能
引导学生利用转化的思想和方法探索异分母分数加、减法的计算方法,并能正确地进行计算,培养学生检验的学习习惯。
2.问题解决与数学思考
培养学生积极动脑、自主探索的精神,提高学生运用所学知识解决简单实际问题的能力。
3.情感、态度价值观
感受数学与生活的密切联系,激发学生对数学学习的兴趣和应用数学的意识。
教具学具
多媒体课件、实物投影
教学重难点
运用转化思想探索异分母分数加减法的计算方法,正确进行计算。
教学过程
一、谈话激趣,导入新课
1.谈话激趣:同学们,我们的城市现正在创建卫生城市,每个居民都要为建设文明、卫生的城市贡献自己的力量,那我们能做些什么呢?
2.引入新课:我们要从身边的小事做起,不随便扔垃圾。我们应该怎样处理生活垃圾呢?一般情况我们把垃圾分为四类(课件出示例1的垃圾分布图),其中纸张和废金属可以回收再利用,从而节约能源,减少环境污染。
二、探索新知
1.学习异分母分数加法
(1)采集信息
问:从这个表上,你了解到了哪些信息?
(指名两三名学生回答)
(2)处理信息
问:根据这些信息,你能提出哪些数学问题?怎样列式?能说说计算过程吗?还能提出什么问题?
(学生口答,教师根据需要在黑板上板书)
(3)探索方法
解决问题:纸张和废金属等占生活垃圾的几分之几?
①要求学生独立思考列式计算。
②观察比较:这个算式和我们以前学习的分数加法有什么不同?
(板书课题:异分母分数加、减法)
③思考方法:你能想办法把它变成我们学过的知识进行计算吗?
④小组内讨论怎样变成学过的知识
⑤学生展示汇报,教师有选择地板书。
学生的方法可能会有化成小数计算、画图计算、先通分在计算等方法。
(4)教师总结
同学们说的方法都是要先把单位统一,然后再相加。具体请看——(课件动态演示通分的过程。)
(5)自主选择二次探究,方法择优
请同学们选择你喜欢的方法计算,看谁算的又对又快!
+ = + = + =
引导择优:你们都是用什么方法计算的?为什么不用化成小数的方法、画图的方法?能不能找到一个都通用的方法?
提问小结:谁能说说异分母分数加法怎样计算?
2.自主学习异分母分数减法
(1)教师启发引导:我们已经解决了纸张和废金属等占生活垃圾的几分之几。你能计算出危险垃圾多还是食物残渣多?多的占生活垃圾的几分之几?
(2)学生独立解答,同桌交流。
(3)集体订正,指名说说计算过程。
3.教师引导学生总结
计算异分母分数加减法时,我们首先应该怎么做?再怎么计算?
三、深化应用
1.刚才我们提出的问题只解决了两个,剩下的问题中选择一个你最感兴趣的问题来解答吗?
学生选择问题,独立解答问题后交流订正。
2.完成书第95页做一做第1、2题。
3.深化应用:练习二十四第2、3题
四、课堂小结
通过这节课的学习,你有什么收获?
第2节 异分母分数加、减法
第2课时(练习课)
教学目标:
1.通过解决简单的实际问题,理解分数加、减法的意义,以及同分母分数加减法的算理。
2.在探索异分母分数加减法的计算方法的过程中,感受转化的数学思想。
3.利用已有的认知基础,提高估算意识和分析概括的能力。
4.在探究过程中体验成功的喜悦,激发积极参与数学学习活动的兴趣,。
教学重点:
探究异分母分数加减法的计算方法。
教学难点:
异分母分数加减法转化为同分母分数加减法的探索过程。
教具学具:
多媒体课件、练习题纸。
教学过程:
一、课前交流
二、复习引入
师:老师伸出一个手指头,可以用什么数表示?两个手指头呢?如果要把这两个数合并起来,算式怎么写?(板书:1+2=3)
师:接下来老师还是伸出一个手指头,除了1以外,你还可以用什么数表示?生:1/5。(师:谁明白他意思?他是怎么想的?)两个手指头呢?(板书:1/5 2/5)
师:大家能比较出这两个分数的相同点和不同点吗?
三、新课教学
(一)同分母分数
1.设疑。
师:如果把这两个分数也合并起来,结果是多少?肯定吗?可我上二年级的女儿不这样认为?她认为是3/10(板书),而且她振振有词地找到了理由,你们和我一起做一做,左手用1个手指表示1/5,右手用两个手指头表示2/5,合起来3/10。
2.解惑。
师:究竟谁的对?请说明理由。
师:谁来解释一下我女儿的问题出在哪儿?
师:对,在学习分数的时候,我们一定要关注单位1。实际上我们得到的不是3个1/10,而是3个1/5,所以结果等于3/5。(板书)
3.明理。
师:这个例子说明在做这类题目的时候,我们应该注意什么?
引导学生明白它们的分数单位没有发生变化,相加的只是分数单位的个数。
师:1+2=3与1/5+2/5=3/5有联系吗?想一想它们的算理一样吗?
师:对,它们的算理是一样的,只是计数单位发生了变化而已。
4.应用。
师:有了这种认识,这两个题目一定不成问题,谁能迅速说出答案?
师:说说你是怎么想的?在计算8/9-5/9时,你想到了哪个算式?你能用8-5=3解释这个算式吗?
5.总结。
师:观察一下我们做过的几个题目,有什么显着的特点?(板书:同分母)
师:你能总结出计算这类分数加减法的方法吗?(课件)
6.揭题。
师:这节课,我们就一起来深入研究分数加减法的计算方法。(板书课题)我们一起把这句话读一遍。
(二)异分母分数
1.承上启下。
师:我们再来看看这两个得数:3/6和3/9,我们还应该对它们作进一步的处理,谁能明白老师的意图?对在计算分数加减法时,不是最简分数的.要化成最简分数。
引导学生约分。
师:约分后得到两个最简分数1/2和1/3,(板书)如果只让大家找它们的不同之处,你能找到哪些?
引导学生找出它们的意义、大小、分数单位、分母不相同(板书:异分母)等。
2.提出问题。
师:如果老师要把这两个意义不同、大小不同,分数单位也不相同的异分母分数也合并起来,我想除少数同学以外,绝大多数同学一定感到为难,实话实说,有没有这样的感觉?
师:如果老师允许你们改写这个算式,而且想怎么改就怎么改,直到你会做为止,你想怎么改?
3.明确方向。
师:从我们听取这些想法中,我发现一个共同的倾向,把它改成分母一样的算式就简单了,我们从这些同学的想法中能得到什么启示呢?
4.转化学习。
师:是呀!我们可不可以在不改变这两个分数大小的情况下,把它们的分母统一起来吗?请大家在草稿纸上试一试。
(1)学生尝试,教师巡视。
(2)板书讲解。
(3)课件展示。
师:我们也可以这样来理解,用同样大小的两个圆分别表示出1/2和1/3,为什么这两个分数的分子不能直接相加呢?
师:即使我们简单的把这两份合在一起,我们也不能准确的说出它究竟占了这个圆的几分之几,因此,只有通过通分的方法,把这两个分数细化为3/6和2/6,从而得出它们的结果是5/6。
(4)归纳方法。
师:如果让你用一句话高度概括出异分母分数加减法的计算方法,你准备怎么归纳?
(三)总结方法并介绍数学文化
师:我们一起来总结一下我们的学习过程,我们在学习异分母分数加减法时,是以什么作为基础的?我们又是用什么方法转化成同分母分数的呢?那同分母分数加减法又是以什么作为基础的呢?
师:实际上,我们是用层层转化的思想,把新知识转化成已知的旧知识来学习的,转化是学习数学学习一种重要的方法,可以使新知识更为简单易懂,你们现在觉得分数加减法简单吗?
师:让你们不可思议的是,这个简单的知识曾令欧洲人十分头痛,德语有句古老的谚语:掉进分数里去了。就是指说一个人遇到困难时束手无策的尴尬处境。这句话是怎样产生的呢?(课件)
师:今天,我们走进了分数的世界,却并没有掉进分数里去,轻而易举的学会了分数加减法的计算方法。这是因为我们勤于思考、善于总结,掌握了科学的学习方法,老师的观点是:只要愿意思考,办法总会有的。还是那句广告言没有做不到,只有想不到。如果老师让你们自己去解决分数问题,你们会掉进分数里去吗?
四、巩固练习
1.算一算。
2.选一选。
3.比一比。
4.填一填。
五、拓展提高
师:课前交流时,我们谈到了一个古老的数学问题,我们回过头再来看一看。想一想,有没有办法让三个儿子在不破坏规定的前提下继承到父亲的遗产呢?这办法还真有。(课件)
师:现在能明白其中的道理吗?其实,这位农夫在设计遗嘱时,是把18作为单位1,而他只留下了17头牛,是18头牛的17/18,而三兄弟的分牛的份额17/18刚才一样,只不过在分年是我们要以18作为单位1,没不是用17作为单位1。
六、总结全课
【教学目标】
1.结合具体的情景,体会理解分数加减法的意义。
2.在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3.让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
【教学重点】
理解并掌握异分母加减法的计算方法与法则。
【教学难点】
掌握异分母分数加减法的算理与算法。
【教学准备】
多媒体课件、两张正方形纸片、题单(看图填空)。
【教学流程】
课前谈话:
我知道我们5年级的学生在语文课中刚刚学习过猜谜语。老师这里也有几个谜语,想不想猜一猜?
1.一加一不是二 (打一字)
2.一减一不是零(打一字)
3.再见了,妈妈 (打一数学名词)
4.考试不作弊 (打一数学名词)
5.七上八下 (打一分数)
师:在猜谜的过程中,我看到很多孩子都在积极地动脑思考,发言声音也很洪亮。那在即将开始的课中,你们能做到吗?
好,我们开始上课。
一、谈话引入
在我们刚才的谜语中,提到了我们本学期学习过的分数。今天,我们便一起来继续研究分数的有关知识——分数加减法。板书课题。
二、学习新知
1.教学同分母分数加减法的计算方法。
(1)课件出示情境图:一工人说,今天上午铺了这个广场的1/16,另一工人说,今天下午铺了这个广场的7/16。
(2)根据信息,你能提出哪些数学问题?
(3)课件出示问题。
①今天一共铺了这个广场的几分之几?
②今天下午比上午多铺了这个广场的几分之几?
(4)拿出本子,列式计算两个问题。不作答。
(5)请一生展示讲解。
预设1:1/16+7/16=8/16=1/2
预设2:7/16-1/16=6/16=3/8
师:你们同意吗?
通常结果要化为最简分数。
师:1/16和7/16两个分数的分母是相同的,我们称为同分母分数。
(6)师:谁来说说1/16+7/16是怎样算的?
生:分母不变,分子相加。
(7)师:在这里,为什么可以分母不变,而只把分子相加呢?
生:因为他们分母相同。
师:在分数中,分母表示什么?
生:平均分的份数。
师:在这里是将这个广场的面积平均分为16份。单位1相同、平均分的份数相同、那每一份的大小呢?也相同。每一份就是它们的分数单位都是1/16;1/16+7/16就是1个1/16+7个1/16,就是8/16。
(8)总结。
师:同分母分数加减法是怎样计算的?
生:分母不变,分子相加减。
师:一起来念一遍,同分母分数相加减,分母不变,分子相加减。(课件)
2.教学异分母分数加减法算理,初步感知算法。
(1)刚才我们用同分母分数加法解决了两个问题,求出今天铺了这个广场的1/2,如果我告诉你,前几天已经铺了这个广场的1/4,您能解决下面的问题吗?
问题:前几天和今天一共铺了这个广场的几分之几?
(2)一起说怎样列式。
生:1/2+1/4。
师:与前面相比,这个算式有什么特别的地方吗?
生:分子相等。
生:分母不同。
师:分母不同的分数我们称为——异分母分数。(板书)
(3)师:1/2+1/4得多少?猜一猜,试着计算一下。
学生独立尝试计算,老师在巡视中注意学生方法。(请三学生板书)
1/2+1/4 1/2+1/4=1/6 1/2+1/4
=2/6 =2/4+1/4
=1/3 =3/4
(4)师:你们同意哪一种呢?
(5)师:1/2+1/4=1/3你们觉得可能吗?为什么?
生1:1/2比1/3大,加上一个数应该比1/2更大,不可能比1/2还小。
师:同意吗?只用估算的方法,就可以做出判断。
生2:他们两个分母不同,不能直接相加减。应该先通分。
师:能直接相加吗?
生:不能。
(6)那第三种答案可能正确吗?有什么办法来验证一下吗?老师给你两个温馨小提示:你可以利用身边的纸折一折、画一画。也可以用其他的计算方法。先自己试一试。
(师巡视,参与学生讨论)
(7)交流汇报。
生1:我采用的是画一画的方法。我先把正方形纸平均分成2份,取其中的一份1/2染上颜色,再取剩下的一半即1/4染上颜色,这样总共就是3/4,所以3/4正确。
师:有图形,有数字,数形结合,清晰明了。
为了使同学们看得更清楚,老师把他这种方法用课件演示给大家。(课件演示)
师:1/2+1/4,他们的分母不同,平均分的份数也不同,每一份的大小也不同。能直接相加吗?先把1/2通分为2/4,2/4+1/4=3/4.
生2:我把他们化成小数再计算。
师:把分数化成小数,你们觉得怎么样?
生:好。
师:好的话就给点掌声吧!
生3:3/4-1/4=1/2。
师:我们看,和减一个加数等于另一个加数,用减法来验证加法,也很有创意!
……
(8)师:各种各样的方法都证明了3/4是正确的。那我们再来看看具体是怎样做的?
板书:1/2+1/4
=2/4+1/4
=3/4
(9)师:面对异分母分数加减法,我们提出猜想、试着解决、想办法验证,再得出结论。短短时间,你们已经经历了科学探究的过程。真了不起!但科学探究并未到此止步,我们还应该将我们的结论进行推广应用。用这种方法,试着做一道题。
3.教学例二。
(1)8/9-5/6 (教师巡视,提醒学生做题格式,学生做完,请两位计算方法不同的学生板演)
(2)交流汇报。
8/9-5/6 8/9-5/6
=48/54-45/54 =16/18-15/18
=3/54 =1/18
=1/18
(3)师:黑板上的答案对吗?观察这两种计算方法,你能找出他们有什么不同点?
生:不同之处,第一个是用两个分母的乘积作为公分母,第二个是用两个分母的最小公倍数作为公分母。
师:也就是选择的公分母不同。
师:那又有什么相同点呢?
生:相同之处是都把分母不相同的分数减法,利用通分转化为分母相同的分数减法。
师:观察得真仔细。
(4)总结法则。
师:你能总结一下异分母分数加减法是怎么计算的吗?
生:我们是把异分母分数先化成同分母分数,再来计算的。(板书:转化,通分)
生:我先通分,化为同分母分数,再按照同分母分数加减法计算。
师:在你的话中用到了一个词——化为。(板书:转化)在这里,我们是把异分母分数转化为同分母分数。
师:转化的方法是什么?通分。
师:一起看看法则。(课件出示)
三、基础练习
师:通过我们努力,探索出了知识,学到了思想方法。你能灵活运用吗?做一做题单上的题。
1.(出示题目,课件)看图填空。
集体对答案。
2.计算。(课件)
我们刚才利用异分母分数加减法的计算法则、数形结合解决了两个问题。如果没有图,你会计算吗?试试看。
1/4+2/5 7/9-2/3 1/10+1/15
师:做完的孩子可以到黑板上板书。
集体讲评。你觉得在计算时要注意什么问题?
师:经过你的提醒,相信你们做题的时候会更认真、仔细,是吗?
四、拓展练习
1.比一比。
那我们来比一比,看谁算得又快又正确。
(1)集体汇报。全对的举手。
(2)观察算式,上面的题有什么特点,怎样算才能比较快。小组讨论。
师:谁来说说你们的发现?
生2:我们发现当两个这样的分数相加时,他们和的分母就是两个分数分母的乘积,他们和的分子就是两个分母的和。
师:你真是善于观察、总结。我们来看第一排。1/2+1/3=5/6中,两个分数分母2和3的积作为和的分母,两个分数分母2和3的和作为和的分子。再来看1/9+1/10=19/90中,有这样的规律吗?
生3:在减法中,差的分母是两个分数分母的和,分子是两个分数分母的差。
师:一起来看,在1/2-1/3=1/6中,差的分母是2和3的积,分子是3和2的差。
师:那是不是每一个分数加减法算式都有这个规律?需要什么条件?
生:分子都是1,分母是互质数。
(3)你能用这个规律,快速计算下面几道题吗?
直接写答案在题单上,看谁做得最快。
2.简单评价。
规律的妙处在这里体现得淋漓尽致。面对试题,我们要有一双善于观察比较的眼睛。
五、全课小结
同学们,回忆一下这节课我们学习的内容。你有什么收获要和大家分享吗?
生:我学到了异分母分数加减可以转化为同分母分数加减法。
生2:我知道了为什么同分母分数可以分母不变,分子直接相加。而异分母分数不能直接相加。
生3:我学到了转化的数学思想。
……
师:同学们收获可真不小,关于分数,还有很多知识等待我们下去继续探究。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号