当前位置:首页 > 教案教学设计 > 数学教案

利率教案人教版

日期:2022-01-09

这是利率教案人教版,是优秀的数学教案文章,供老师家长们参考学习。

利率教案人教版

利率教案人教版第 1 篇

利率

一、创设情境 生成问题

1、开一个关于利率的发布会。

师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?

学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。

根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

二、探索交流 解决问题

1、感知利息。

师:近年来,我们柳河县始终坚持富民优先的发展思路,以发展民营经济作为经济发展的主体工程,收到了显著成效。很多人家里都有了暂时不用的钱,你知道他们是怎样处理这些钱的吗?

生:存入银行......

师:人们常常把暂时不用的钱存入银行储蓄起来。那储蓄有什么好处呢?

生:放在银行比较安全;可以得到利息。

师: 取款时,银行多支付的钱叫做利息。(板书:利息)

小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。

学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。

2、存款的方式。

师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。

我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?

这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。

这是老师的一张存款单(课件出示存款单,钱数:1000元、时间:一年、方式:定期),你能从这张存单上得到哪些信息,你是如何理解这些信息的?

学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。

学生观察讨论。

我们先来交流一下你能理解的信息。

生:我知道老师是在中国人民银行存的款。

师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)

生:我还知道老师存款的方式是定期存款。

什么是定期存款的存款方式?那你知道存款的其他方式吗?

生:整存整取,零存整取,定活两便、活期存款等

生:我知道老师存的是一千元人民币。

师:银行还办理外币储蓄。

3、认识本金、利息、利率;明白利息的计算方法。

通过课前的自学,你知道这一千元就叫……?

对,我们把存入银行的钱叫做本金。

生:我还看到利率是百分之二点二五。

你知道什么叫利率吗?

利息/本金=利率(老师板书)

师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?

关于利率,你们还知道什么?

………

师:同学们了解的还真不少,你们能帮老师算算到期后老师可以得到多少利息?该如何计算呢?

生:“利息/本金=利率”。我还知道:利息=本金×利率。

师:既然大家已经知道了怎么样计算利息了,大家就来帮助老师计算一下,一年后我能得到多少利息?

师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。

学生可能出现下面三个算式:

1)2000×2.25%×2 2)2000×2.70%×2  3)2000×2.70%

比较三个算式:

1)2.25%是一年的年利率,2.70%是定期二年的年利率

2) 让学生说说自己的看法。

生1:定期二年得到的利息等于本金乘二年期的利率。

生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。

师把公式填写完整:利息=本金×利率×时间(板书:×时间)

小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。

4、学习利息税知识:

师:大家都算出了我应得的利息,但实际上我并不能得到你们算出的利息,你们知道为什么吗?

教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?

生:要扣除利息所得税,要扣除20%的利息所得税。

师:那老师到期后能得到多少税后利息呢?

学生计算后小组交流,生列式计算,允许用计算器。

然后归纳公式

税后利息=本金×利率×时间×(1-20%)(板书)

教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。

小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。

三、巩固应用 内化提高

1、基本应用:

(1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。

在弄清以上这些相关概念之后,学生尝试解答例题。

在学生独立审题解答的基础上订正。

板书:

方法一 方法二

1000×2.25%×1=22.50(元) 1000×2.25%×1=22.50(元)

22.50×20%=4.50(元) 1000+22.50×(1-20%)

1000+22.50-4.50=1018(元) =1018(元)

答:一年后王奶奶可以取回1018元。

师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。

(2)、学生完成第100页的“做一做”。下面是张叔叔到银行存款时填写的存款凭证。到期时张叔叔可以取回多少钱?

四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)

这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。

(3)、102页第6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。

2、综合应用

(1)、王大爷在2009年1月1日把10000元定期存款二年,可是在2010年8月1日,急需用钱,你帮王大爷出出主意,该怎么办呢?

让学生明白,如果定期存款中途取时,只能按活期算

生:可以先向别人借钱,等存款到期后,再归还借款。

生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。

这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。

(2)、课后实践、体验储蓄过程

师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。

四、回顾整理 反思提升

通过本课的学习,你有什么收获?

板书设计

利率

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利率教案人教版第 2 篇

一、教学内容:第11页的内容。

二、教学目标:

1、学生在调查实践中了解储蓄的意义、种类,理解 什么是本金、利息。

2、能正确计算利息。

三、课时计划:1课时

四、教学重点:利息的计算。

五、教学难点:利息的计算。

六、教学方法:先学后教,有效训练

七、教学准备:多媒体课件 教学过程:

一、引课明标

1、复习

(1)10万元的5%是多少? (2)一个数的80%是100,求这个数。

(3)500减少20%后是多少? (4)1000元增加2%后是多少? (5)100比某数多10%,求某数?

2、创设生活情境,了解储蓄的意义和种类 (1)储蓄的意义

刚过完年你们有很多压岁钱你们的压岁钱是怎么处理的呢? (2)学生各抒己见

3、)了解储蓄的种类。(学生汇报课前调查)

二、自主探究(精讲点拨)

自学课本,理解本金”、“利息”、“利率”的含义

1、自学课本中的例子,理解“本金”、“利息”、“利率”的含义,然后四人小组互相举例,检查对“本金”、“利息”、“利率”的理解。

本金:存入银行的钱叫做本金。 利息:取款时银行多付的钱叫做利息。 利率:利息与本金的百分比叫做利率。

2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

3、利息计算 (1)利息计算公式 利息=本金×利率×时间

(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3.75%)。 在弄清以上这些相关概念之后,学生尝试解答例题。 在学生独立审题解答的基础上订正。 5000+5000×3.75%×2 =5000+375 =5375(元) 答:到期后可以取回5375元钱。

三、训练达标

1、第11页做一做

2、2012年8月,张爷爷把儿子寄来的8000元钱存入银行,存期5年,年利率为4.75%,到期支取时,张爷爷可得到多少利息?到期时张爷爷一共能取回多少钱?

3、李阳的爸爸将一笔款存入银行整存整取三年,年利率是4.75%,到期时得到的利息是5700元,李阳的爸爸当初存入的是多少钱?

4、乐乐把5000元压岁钱存入银行两年,年利率是3.75%,到期后,他准备把利息的80%捐给“希望工程”。乐乐捐给“希望工程”多少钱?

四、小结提升

学生谈谈学习本课有什么新的收获。 布置作业:第14页的第9题 板书设计:

利率

利息=本金×利率×存期 取回总钱数=本金+利息

5000+5000×3.75%×2

=5000+375 =5375(元) 答:到期后王奶奶可以取回5375元钱。 教学反思:

利率教案人教版第 3 篇

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第11页。本节课与现实生活紧密联系,通过介绍储蓄的意义、本金、利息、利率及利息的计算公式,然后在解决问题的过程中,掌握计算利息的基本方法,进一步牢固地掌握百分数问题的解决方法。

  (二)核心能力

  在理解利率有关概念的基础上,将利率相关问题与百分数应用题建立联系,发展迁移类推的学习能力。

  (三)学习目标

  1、通过自主学习、小组调查,能结合实例说明储蓄的意义、本金、利息、利率及利息的计算公式。

  2、通过独立思考,小组交流,能准确找到存期及相对应的年利率,进而解决问题,沟通解决有关利率问题与百分数问题之间的练习,发展迁移类推的学习能力。

  3、会解决生活中的储蓄问题,养成勤俭节约的好习惯及理财意识,感受数学与生活之间的密切联系。

  (四)学习重点

  会准确计算利息。

  (五)学习难点

  将“利率”相关问题与百分数应用题建立联系,正确解决实际问题。

  (六)配套资源

  实施资源:《利率》名师教学课件。

  二、学习设计

  (一)课前设计

  1.预习任务

  (1)预习课本第11页,并完成以下题目。

  ①存入银行的钱叫做( ),取款时银行多支付的钱叫做( )。

  ②( )与( )的比率叫做利率。

  ③利息的计算公式是( )。

  (2)以小组为单位,向家长或银行工作人员了解课本上的相关内容。如:储蓄的种类、银行存款的年利率、存款凭条如何填写等。

  设计意图:数学知识来源于生活,应用于生活。通过实际调查及课前预习,培养学生的搜集、提取、整理、归纳信息的能力。(考查目标1)

  (二)课堂设计

  1、谈话导入

  师:在调查储蓄的过程中,你搜集到哪些相关的知识?遇到了哪些困难?有什么感受?

  设计意图:学生通过课前的调查,充分感知了储蓄的益处。全班交流时,不仅充分调动了学生的积极性,而且进一步解决调查时出现的问题,体会到数学与生活的密切联系。(考查目标1)

  2、问题探究

  (1)认识本金、利息、利率。

  师:这是一张存款单,你能从这张存单上得到哪些信息?你是如何理解这些信息的?

  学生思考后独立发言交流。

  师重点引导下面问题:

  ①什么是整存存款?你还知道其他的存款方式吗?

  ②存了10000元人民币。通过课前自学,你知道这10000元叫什么吗?

  ③利率是1.95%。你能解释一下什么是利率吗?(利息/本金=利率)

  师:你能解释一下这里的1.95%表示什么意思吗?(利息占本金的1.95%;把本金平均分成100份利息占1.95份。)

  师:这是20xx年7月中国人民银行公布的存款利率,你发现了什么?

  学生自由发言。

  引导小结:定期利率比活期利率高。存期不同,年利率也不同,银行的利率是国家根据经济发展的需要确定的。

  设计意图:虽然对于储蓄这件事学生并不陌生,但是他们真正接触的并不多,在初步了解本金、利息、利率的基础上结合实例进行理解很有必要。(考查目标1)

  (2)利息的计算方法。

  师:同学们了解的还真不少,现在老师有10000元存到了中国银行,一年后,我取回的钱变多了还是变少了?你们能帮我算算一年后可以得到多少利息吗?

  ①分析问题,理解题意

  师:想想利息的多少跟哪些因素相关?该如何计算?

  生自由发言。讨论得出如下关系式:利息=本金×利率×存期

  ②独立解答,交流汇报

  10000×1.75%×1=175(元)

  小结:存期不同,利率也不相同,我们在计算时要注意存期和年利率的对应。年利率是指一年的,在算利息时需要考虑存款时间。

  ③拓展练习,总结提升

  师:如果老师存三年,你们能帮我算算到期后可以取回多少钱吗?

  独立完成→集体讲解

  汇报时,重点分析以下问题:到期后老师能取回的钱应该包括哪几部分?我们可以先算出什么?

  预设一:10000×2.75%×3=825(元)10000+825=10825(元)

  追问:10000×2.75%表示什么?乘3又表示什么?

  预设二:10000×(1+2.75%×3)=10000×1.0825=10825(元)

  引导小结:可以先求出利息,再加上本金;也可以直接用“求比一个数多百分之几的数是多少”来解决。由于存的是三年,需要找到与之相对应的年利率,并注意存期是3年。

  师:回想刚才解决问题的过程,我们是如何计算有关利息的问题?在计算时要注意什么?

  设计意图:让学生通过尝试自行计算利息,探讨利息的计算方法,在反馈中进行辨析答疑,从而建立解决有关利率的实际问题与百分数问题之间的联系,发展学生的迁移类推能力。考查目标2、3

  3、巩固练习

  (1)小雨前年10月1日把1000元存入银行,定期2年。如果年利率按2.25%计算,到今年10月1日取出时,她可以取出本金和利息共多少元?下面列式正确的是( )

  A.1000×2.25%

  B.1000×2.25%×2

  C.1000×(1+2.25%)

  D.1000×(1+2.25%×2)

  (2)李经理把年终奖金5000元存入银行,定期五年,年利率是4.75%,到期时他打算用本金和利息购买一台价值7500元的空气净化器,够吗?如果不够,还差多少元?

  (3)李林准备把自己积攒的1000元零花钱存入银行,等两年后上中学用。下面是两位同学为他提供的两种储蓄方式,你认为谁提供的储蓄方式获得的利息多?结合下面利率表算一算。

  4、课堂总结

  师:今天这节课,我们运用百分数的知识解决了储蓄中的数学问题,知道了运用利息=本金×利率×存期的方法来计算利息!对于今天所学的知识,大家还有没有疑问?

  (三)课时作业

  1.小兰两年前将一笔压岁钱存入银行,存期为两年,年利率为2.25%,今年到期时小兰共取出了1045元,你知道小兰两年前存入了多少钱吗?

  答案:方法一:

  解:设小兰两年前存入了x元。

  x+x×2.25%×2=1045

  1.045x=1045

  x=1000

  方法二:1045÷(1+2.25%×2)

  =1045÷1.045

  =1000(元)

  答:小兰两年前存入了1000元。

  解析:本题需要求本金,是例题的逆应用,注意引导学生在找准数量关系的基础上正确列式或列出方程,不断提高解决百分数问题的能力。(考查目标1、2、3)

  2.王阿姨三年前把50000万元存入银行,到期后共取出54125元,问两年定期存款的利率是多少?

  答案:

  (54125-50000)÷3÷50000×100%

  =4125÷3÷50000×100%

  =1375÷50000×100%

  =2.75%

  答:两年定期存款的利率是2.75%。

  解析:本题考查利率的计算方法,需学生正确分析题意,体会百分数在生活中的广泛应用,进一步把握用百分数解决实际问题的方法。(考查目标2、3)

利率教案人教版第 4 篇

  课题利率

  教学内容教学内容:利率(课本第11页例4)

  课型新课

  教学目标

  1、学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。

  2、能正确计算利息。

  教学重点:利息的计算

  教学难点:利息的计算。

  教学手段课件。

  教学方法联系生活,引导学习,总结提升;自主学习,小组讨论

  教学过程

  一,导入新课:

  同学们,你们去过银行吗?你知道去银行人民常做什么吗?你知道我们周围有什么银行?你见过银行卡吗?

  二、创设生活情境,了解储蓄的意义和种类

  1、储蓄的意义

  师:快要到年底了,许多同学的爸爸妈妈的单位里

  会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?

  2、储蓄的种类。(学生汇报课前调查)

  三、自学课本,理解本金“、”利息“、”利率“的含义

  1、自学课本中的例子,理解”本金“、”利息“、”利率“的含义,然后四人小组互相举例,检查对”本金“、”利息“、”利率“的理解。

  本金:存入银行的钱叫做本金。

  利息:取款时银行多付的钱叫做利息。

  利率:;利息与本金的百分比叫做利率。

  2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的.长短,利息也是不一样的。

  3、利息计算

  (1)利息计算公式

  利息=本金×利率×时间

  (2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是3。75%)。

  在弄清以上这些相关概念之后,学生尝试解答例题。

  在学生独立审题解答的基础上订正。

  方法一方法二

  5000×3。75%×2=375(元)

  5000×(1+3。75%×2)

  5000+375=5375(元)=5000×1。075

  =5375(元)

  四、实践应用

  第11页做一做

  完成练习时看清题目认真审题,注意计算要准确。

  五、课堂总结

  学生谈谈学习本课有什么新的收获。

  作业

  第14页的第9题

  板书设计

  利率

  本金:存入银行的钱叫做本金。

  利息:取款时银行多付的钱叫做利息。

  利率:;利息与本金的百分比叫做利率

  利息计算公式

  利息=本金×利率×时间

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号