当前位置:首页 > 教案教学设计 > 数学教案

图形的旋转教学设计说明

日期:2022-01-17

这是图形的旋转教学设计说明,是优秀的数学教案文章,供老师家长们参考学习。

图形的旋转教学设计说明

图形的旋转教学设计说明第 1 篇

一、教材的地位与作用

图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段

数学课程标准中图形变换的一个重要组成部分。教材中从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中具有旋转特点的事物,进而探索其性质,是培养学生思维能力、树立运动变化观点的良好素材。同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,它不仅为本章后续学习对称图形、中心对称图形做好准备,而且也为今后学习“圆”的知识内容做好铺垫。

二.学情分析

认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

情感与学习风格分析:他们喜欢学习生动活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,用自己的双手来操作,用自己的语言来交流、表达,用自己的心灵去感悟。

三、教学目标

在新课程改革背景下的数学教学应以学生的发展为本,学生的能力培养为主,同时从知识教学、技能训练等方面,根据《新课程》对本节课内容的要求及本节课的学习结果类型,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:

知识目标

(1)了解生活中旋转现象的广泛存在;

(2)掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换;

(3)会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋

转角;

(4)理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转后图形上的每一点都绕着旋转中心转动了相同的角度,但图形的形状和大小都没有变化;

能力目标

通过观察、操作、交流、归纳等过程,培养学生的动手能力、观察能力、探究问题的能力以及与人合作交流的能力。经历探索图形在旋转变换中的变化情况的过程,体会旋转变换对研究图形变化的重要性。

情感目标

经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神。

这里需要特别指出的是,由于本节课数学知识技能相对简单,而数学思想方法与旋转变换的文化内涵十分丰富,本节课将强化过程与方法、情感态度与价值观两方面目标的落实与渗透。

四、重点与难点

本节课的重点是旋转的有关概念及性质。

难点是概念的形成过程与性质的探究过程。

五、教法与学法

按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。

根据学法指导自主性和差异性原则,让学生在“观察——操作——交流——归纳——应用”的实践探索中,自主参与知识的产生、发展、形成与应用的过程。通过学生的自主活动、主动探索、合作交流、动手操作等活动来构建与此相关的知识经验,使学生掌握知识,从而达到知识的运用。遵循为学生的学习服务、为学生的发展服务的宗旨,本节课采用“问题情境——建立模型——解释、应用与拓展”的模式展开,引导学生自己提出问题、解决问题、拓展问题,指导学生用观察、抽象、自主探究为主、合作交流为辅的方法进行学习。

六.设计理念:

在设计时,遵循两个原则。

(1)树立发展学生为本的思想,通过构建以学习者为中心,有利于学生主体精神,创新能力健康发展的宽松的教学环境,提供学生自主探索的机会,亲身参与概念的形成过程与性质的探究过程;

(2)坚持协同创新原则,把教材创新、教法创新及学法创新有机地统一起来。

首先是教材创新,新课标下的教材执行赋予教师更大的创新空间。

a) 利用生活中方方面面丰富的旋转图形,或利用旋转原理的生活工具来刺激学生的感官,激发学生学习的热情,以问题的形式引导学生议论、观察、分析、归纳来完成旋转概念的形成过程,以及在实验操作的基础上引导学生探究旋转的性质;

b) 重新编排例、习题。在完成旋转的概念及性质后,引导学生进行有趣的习题练习,让学生体会学习的乐趣和感受成功的喜悦;

c) 其次是教法创新。采用多种教学方法的有机结合,既有启发式、发现法的教学方法,又有探究式及情感教学法。

最后是学法创新。

a) 乐学。在整个学习过程中,在问题的引导下,让学生保持强烈的好奇心和求知欲,通过观察、分析、归纳来获取知识,有意识地创造学生感兴趣的氛围,使学生全身心地投入到学习中去,成为学习的主人;

b) 善用。

七.教具与学具准备

多媒体课件,扑克牌,三角板、圆规、铅笔等。

八.教学过程

(一)创设情景,引入新知

揭示概念的产生背景

现代教学认为,在正式进行发现过程前要让学生对探索的目标,意义认识得

十分明确,并从内心产生巨大的动力,做好探索的物质和精神准备.

情景创设:

1、用课件显示现实生活中部分物体的旋转现象。

2、播放图形的平移,轴对称的动画,让学生意识到将要学的旋转也是一种图形变换。

我们看到了许多转动的物体,其实,我们就生活在一个处处能见到旋转现象的世界中。这节课就由班老师与大家一起学习《23.1图形的旋转》板书课题。

3、出示目标:让学生带着目标去参与学习。

(二)探索新知,形成概念

1.向学生展示有关的图片:(让我们继续观察)

(1) 大风车叶片

(2荡秋千

(3)风扇的叶片

(4)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)

(5)汽车上的雨刮器

大风车

u=1946238861,1169909399&gp=3

电风扇1

通过这些画面的展示

(1) 切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望;

(2) 为本节课探究问题作好铺垫。

情景问题:

这些情景中的转动现象,有什么共同特征?

设计意图:鼓励学生通过观察、思考和讨论,用自己的语言来描述这些转动的共同特征,初步感受转动的本质是绕着某一点,旋转一定的角度这两点。

2.建立旋转的概念

(1)试一试,请同学们尝试用自己的语言来描述以下旋转.

问题:上图中小球的转动由位置A转到B,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?

·

在同一平面内,点A绕着定点O顺时针旋转45度得到点B;

在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;

观察了上面图形的运动后,引导学生进入本课第一个学习目标:

图形旋转的概念;

本环节学生先独立尝试,再同学之间讨论交流、总结,在此过程中以培养学生的抽象概括能力,同时让学生体会到合作交流的必要性,随后,给出旋转的定义:

像这样,把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

回归生活 感受旋转:举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.(典型且老师未说的例子)

小练习:下列现象中属于旋转的有 个。①地下水位逐年下降;②滑雪运动员在雪地上滑行;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.

(2)情景问题:

△OAB围绕O点旋转到△OA′B′的位置,找出下列图形旋转的旋转中心、

旋转方向、旋转角.

设计意图:为学生进入本节课的第二个学习目标。①点明图形旋转中对应点、对应线段及对应角的概念;②让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。

本环节教学中,教师及时观察学生的学习情况和学习进度,碰到学生中的普遍性问题,在进行适当的探讨后,利用谈话讨论的形式进行解决。

3.应用旋转的概念解决问题

这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的能力。

△ABC是等边三角形,D是BC边上的一点,△ABD经过旋转后到达△ACE的位置 。

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)如果M是AB上中点,么经过上述的旋转后,M到了什么位置?

设计意图:

① 及时巩固新知,使每个学生都有收获;

② 感受成功的喜悦,肯定探索活动的意义。

(三)实践操作,再探新知

做一做:(用扑克牌替代硬纸板,两人一组合作)

如图,在硬纸板上,挖出一个三角形ABC,再挖

一个小洞O作为旋转中心,硬纸板下面放一张白

纸。先在纸上描出这个挖掉的三角形图案

(△ABC),然后围绕旋转中心转动硬纸板,再

描出这个挖掉的三角形(△DEF),移开硬纸板。

问题:请指出旋转中心和各对应点,哪一个角是旋转角?

1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?

2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?

图形的位置 图形的形状和大小

量一量线段OA与线段OD的关系怎样(这里包括数量关系和位置关系),线段OB和OE,OC和OF呢?AB与DE呢?

3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?

设计意图:课件演示及学生的动手操作,培养学生的动手能力、观察能力和探究问题的能力,以及与人合作交流的能力,充分体现了教师为主导,学生为主体的教学方法。同时以问题为导引,逐步对旋转的性质进行探究,这样既突出了重点,又突破了难点。

操作方式:

本环节让学生在独立思考的基础上,再进行小组合作交流,利用度量等方法发现规律。教师提供给学生动态的旋转图形,进行指导并参与讨论交流,而后归纳出旋转的特征。

1.旋转前后的图形全等;

2.对应点到旋转中心的距离相等;

3.对应点与旋转中心连线段的夹角等于旋转角。

(四)巩固新知,形成技能

图片1-根据学生的具体情况,遵循“循序渐进”的原则,层层递进,逐步形成技能。

例题讲解:

1.如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形。

分析:关键是确定△ADE三个顶点的对应点,即它们旋转后的图形。

想一想:有几种确定F点位置的做法?

拓展:(1)、点M是AD的中点,经上述旋转后,点M到什么位置?

(2)、若正方形ABCD的边长是2,

①则点M在旋转时经过的路径长是多少?

② 求四边形AFCE的面积。

巩固练习:1.如图,小明坐在秋千上,秋千旋转了80°.请在图中小明身上任意选一点P,利用旋转性质,标出点P的对应点.

2.如图正方形CDEF旋转后能与正方形ABCD重合,若O是CD的中点那么图形上可以作为旋转中心的点是_________

3.如图,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过旋转后到△ACP位置,则旋转中心是__________,旋转角等于_________度,△ADP是___________三角形.

4.如图E是正方形ABCD内一点,将△ABE绕点B顺时针方向旋转到△CBF,其中EB=3cm,则BF=_____cm ,∠EBF=______

提高练习:如图,在正方形ABCD中,E是CB延长线上一点, △ABE经过旋转后得到△ADF,请按图回答:

(1)旋转中心是哪一点?

(2)旋转角是多少度?

(3)∠EAF等于多少度?

(4)经过旋转,点B与点E分别转到什么位置?

(5)若点G是线段BE的中点,经过旋转后,点G转到了什么位置?请在图形上作出. (6)连结EF,请判断△AEF的形状.

(7)试判断四边形ABCD与AFCE面积的大小关系.

(五)回顾反思,深化提高

利用提问、解说形式,师生共同进行小结。

学生小结:自主小结和交流知识学习的收获,过程经历的感受,数学思想的感悟,学习方法的体会等,或提出疑问进行讨论;

教师小结:帮助学生整理所学知识,引导学生进一步体会探究学习的过程和方法,领会数学的思想。

小结注重知识和方法两方面,学生可能只注重于知识小结而忽略了方法的总结,在方法小结时,需要教师的合作帮助,让学生养成良好的学习数学的方法和习惯。

(六)分层作业,促进发展

最后布置作业,结合学生的实际水平,为了更好的因材施教,我准备了两部分作业:必做题和探究题。

必做题:

课本P59题第1、2、3题

探究题:典中点P60《图形的旋转》(第1课时)

九.教学设计说明

我按以下思路设计本课:

以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。

教学过程突出以下构想:

(1) 创设情景,引人入胜

首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为

新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2) 过程凸现,紧扣重点

旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出

概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。

(3) 动态显现,化难为易

教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开

了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

(4) 例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,

培养学生的发散思维,也增强学生用数学的意识。

图形的旋转教学设计说明第 2 篇

  一.课堂结构体系

  《图形的旋转》是人教版九年级上册第23章第一节的学习内容,之前已对平移、轴对称两种图形变换有了一定的认识,通过本节课的学习,学生对图形变换的认识会更完整,同时,也为后面学习中心对称、圆作铺垫,在知识上起了承上启下的作用。为此我把《旋转》分两个课时组织教学,第一课时的重点是旋转的定义和性质的探究,第二课时要求学生能利用旋转的性质作出旋转后的图形并设计新图案。

  二.教学引入设计

  第一课时以世博会为载体,通过世博会印度馆风车发电的视频,导入新课,充分地调动了孩子们的学习兴趣,也体现了数学来源于生活的理念,同时还渗透了节能减排、环保的意识,然后播放生活中一系列有关转动的图片,让学生切身感受到身边除了平移、轴对称等图形变换之外,还存在着大量的转动现象,从而产生对这种变换进一步探究的强烈欲望,快速而自然地引入课题。

  第2课时中如何利用旋转性质作出旋转后的图形?这个问题如果直接让学生作答有些困难。在教学中,我将难题分解,采取变式训练,先作点绕点旋转后的图形,然后由点过渡到线段,再由线段多渡到三角形,由点到线,由线到面,层层递进,由易到难,得出旋转实质-----“形旋转”可以转化为“点旋转”,培养学生的转化思想,进而通过拓展问题让学生体会从特殊到一般的认知规律。

  二.课程内容创新

  在整个教学设计过程中,始终坚持以新课程标准理念为指导,紧扣教学内容,结合学生实际情况,实现以下创新:

  创新1.

  在概念的形成过程中,引导学生仔细分析从生活中实物的旋转抽象成平面图形的旋转,例如:第一个图类比于点绕点的转动,第二个图类比于线段绕点的转动,第三个图类比于四边形绕点的转动,不断的对各种现象进行类比,逐步引导学生归纳出旋转的定义。

  创新2.

  性质2,性质3的探究,让学生自制硬纸板,在硬纸板上挖一个三角形,在三角形外取点O作为旋转中心,先描出这个三角形记为△ABC,然后围绕旋转中心转动硬纸板再画出△A′B′C′,移开硬纸板即可得到此图形。画出图后,孩子们借助此学案,以问题为引导、利用刻度尺、量角器、圆规等学具进行观察、测量,先独立思考,后小组合作,逐步对旋转的性质进行探究,这样既突出了重点,又突破了难点,并利用投影仪展示小组的探究成果。经过一系列探究活动学生又得出以下2个结论。此环节通过设计学案让学生的动手操作有目的、有思考、不流于形式,通过自制教具、投影仪展示等教学手段增强了教学的直观性、实效性。

  创新3.

  在学生得出结论后灵活地处理教材,通过问题(1)把旋转中心位于三角形上和三角形内的两种情况引入课堂可以培养学生思维的.严密性,对于这两种情况结论是否仍然成立用几何画板进行了验证。

  创新4.

  几何画板验证结论,体现了数学的严谨性。

  创新5.

  在习题的选取方面,例题1中,在教材已有第一问的基础上,加入第二问,考察学生对旋转性质及等腰直角三角形的掌握情况,并添加了一道拓展思维题,培养学生转化的思想,锻炼学生的发散思维。

  创新6.

  数学日记能更好的反映每个学生的情况,体现了面对每一个学生的新课程理念。

  创新7

  分层布置作业以适应不同梯度学生的要求,体现了不同的人在数学中可以得到不同的发展。

  三.资源运用与设计评价

  资源运用

  1、视频引入,展示生活情景,激发学生的学习动机

  2、结合实物介绍相关概念更形象、直观、容易理解

  3、运用PPT动画,展示图形的旋转,给学生多感官刺激

  4、使用自制教具学具,让学生体会运用旋转构造图案的过程

  5、学案每个学生一份,帮助学生更好的掌握学习内容

  6、几何画板验证结论的正确性,体现了数学的严谨性

  7、利用实物投影仪,展示学生成果,提高学习兴趣

  设计评价

  本节课以问题为载体,以学生动手实践、自主探索、讨论交流为主要的学习方式,始终贯彻“教师为主导,学生为主体”的教学理念。在整个活动中,学生是学习的主人,教师成为课堂上问题的激发者、有序探究的组织者。教师实现:巧妙设计、愉快教学。学生体验:我探究、我快乐、我思考、我成功!

图形的旋转教学设计说明第 3 篇

教学目标

了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

重难点、关键

1.重点:旋转及对应点的有关概念及其应用.

2.难点与关键:从活生生的数学中抽出概念.

教学过程

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1、2两题有什么共同特点呢?

共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A、B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.

(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?

(2)请画出旋转中心和旋转角.

(3)指出,经过旋转,点A、B、C、D分别移到什么位置?

(老师点评)

(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.

最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.

三、巩固练习

教材P65 练习1、2、3.

四、应用拓展

例3.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为 ,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.

分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.

解:面积不变.

理由:设任转一角度,如图所示.

在Rt△ODD′和Rt△OEE′中

∠ODD′=∠OEE′=90°

∠DOD′=∠EOE′=90°-∠BOE

OD=OD

∴△ODD′≌△OEE′

∴S△ODD`=S△OEE`

∴S四边形OE`BD`=S正方形OEBD=

五、归纳小结(学生总结,老师点评)

本节课要掌握:

1.旋转及其旋转中心、旋转角的概念.

2.旋转的对应点及其它们的应用.

六、布置作业

1. 练习1、2、3.

2.课件上的题目。

23.1 图形的旋转

课时设计 课堂实录

23.1 图形的旋转

1第一学时 教学活动 活动1【讲授】23图形的旋转

23.1 图形的旋转(1)

教学目标

了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

重难点、关键

1.重点:旋转及对应点的有关概念及其应用.

2.难点与关键:从活生生的数学中抽出概念.

教学过程

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1、2两题有什么共同特点呢?

共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A、B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.

(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?

(2)请画出旋转中心和旋转角.

(3)指出,经过旋转,点A、B、C、D分别移到什么位置?

(老师点评)

(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.

最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.

三、巩固练习

教材P65 练习1、2、3.

四、应用拓展

例3.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为 ,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.

分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.

解:面积不变.

理由:设任转一角度,如图所示.

在Rt△ODD′和Rt△OEE′中

∠ODD′=∠OEE′=90°

∠DOD′=∠EOE′=90°-∠BOE

OD=OD

∴△ODD′≌△OEE′

∴S△ODD`=S△OEE`

∴S四边形OE`BD`=S正方形OEBD=

五、归纳小结(学生总结,老师点评)

本节课要掌握:

1.旋转及其旋转中心、旋转角的概念.

2.旋转的对应点及其它们的应用.

六、布置作业

1. 练习1、2、3.

2.课件上的题目。

图形的旋转教学设计说明第 4 篇

  一、游戏创设情景,导入新课。

  幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?

  师:希望每个同学都能拥有健康的身体,学会智慧地思考,在学习数学的过程中体验成功的快乐。转盘上指针的运动方式,在三年级我们已经有一定了解,叫旋转。请看大屏幕(转杆的关和合),在小区门口看过这个转杆吗?转杆的运动方式是(学生一起说)师:对了,转杆的打开和关闭也是旋转。今天我们一起来研究旋转。(揭示课题:旋转)

  二、探索线段旋转,体会旋转三要素

  1、对比研究转杆的运动

  (1)用手势来比划转杆的运动

  转杆的打开、关闭是旋转运动,今天我们就以这个为例来研究。举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

  (2)讨论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

  你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。哪些地方是不同的?同桌交流。

  不同点:这两次旋转的方向不同。你们知道转杆关闭的方向叫 (顺时针方向)为什么叫顺时针方向呢?(显示钟面是时针的运动)那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

  相同点:都绕着一个点在旋转,这个点就是旋转的中心点。都旋转了90度。

  (3)小结

  刚才我们学了旋转重要的三个特点:中心、方向、角度。其实所有的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有一定的角度,角度有大有小(显示旋转的图片时钟、折扇、风车)

  2.巩固练习

  刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?

  a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。(演示将一袋盐放入盘中)取出物品指针又是怎样旋转的呢?

  b、请看,老师这里还有一个转盘呢!谁愿意和老师合作玩“我说你转”的游戏:(老师提要求,学生转动转盘)

  请把指针从A点顺时针旋转90,转到( ), 再把指针从B点逆时针旋转90,转到( ) 。

  要想清楚地知道一个物体是怎样旋转的,就得把这三方面说清楚。

  结合三方面说说线段AB是怎样旋转的

  线段AB绕( )点( )时针旋转( )度。

  [为了帮助学生构建准确的概念,本环节从直观感知,动手演示,深化理解三个层次展开教学,并用动作的形象性来弥补语言描述的不足。学生在找一找、说一说、转一转中,深刻理解了按顺时针或逆时针方向旋转90度。

  三、探索图形旋转90度,培养空间观念

  刚才我们是把指针、转杆旋转90。你们知道吗?图形也可以旋转,下面我们就一起来研究如何把一个图形旋转90度。(把板书补充完整:图形的)课件出示例2:

  (1)问:谁知道“绕A点旋转”是什么意思?怎么转呢?(两种方向)

  (2)先来顺时针的方向转,转到90度一块喊停。你们怎么看出是饶着A点旋转了90度的。(旋转前的AC到旋转后的AC是90度,有谁是从不同的边看出的吗?AB到AB。还能从别的边看出吗?其实BC边也是旋转了90度,只不过用BC来判断不直观,有点困难。所以聪明的`你们都喜欢找AB、AC,AB、AC都是与中心相连的两条边。既好找又直观。

  (3)在来看逆时针旋转90度,老师想考考大家,愿意接受挑战吗?请你们先在头脑里想象出旋转后的形状。用手势来表示。请学生来比一比。如果让你画出来你会画吗?试一试,说说你是怎么画的。交流有什么方法可以画的又对有快吗?确定一条边旋转90度,连到哪里有点困难,看来要找两条边然后连起来。这两条边是随便的两条边吗?都联着A点。画一画,验证转一下。

  (5)巩固练习(“想想做做”2)

  刚才大家通过动手、动脑,把三角形旋转了90,并画出旋转后的图形,现在你们想试试其他图形吗?

  a、(课件出示题目)读题明确要求,请拿出课前准备的长方形纸片和三角形小旗,按要求在方格纸上旋转并画出旋转后的图形。

  b、谁愿意上来给大家介绍你的做法?(展示、交流、评价)

  c、(课件演示,图形旋转后画线,并标上弧线。)师:为了表示旋转的方向,还要在图形相对应的某一组对边之间画出弧线,标上箭头。(请学生在自己的图中标上旋转方向)

  [将图形在方格纸上旋转90是本节课的难点,所以在教学中不能急于求成,要给学生充分的探索时间与空间,从借助实物旋转到引导学生学会徒手旋转,设计了很多小环节,层层递进,使教学落到实处。既有独立操作又有合作探索,使学生在交流、展示、倾听和评价中逐渐探索出将图形在方格纸上旋转90的方法。从而突破了教学难点]

  四、思维拓展(“想想做做” 3)

  图形的旋转非常有趣,其中也有许多奥秘,请看下面三组图形。

  1、读题,明确题意

  2、先独立思考,再把你的想法告诉同桌。

  3、小组交流。(重点说几号图形绕哪个点按什么方向旋转多少度)

  4、学生汇报:课件演示。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号