日期:2022-01-19
这是圆的周长教学案例,是优秀的数学教案文章,供老师家长们参考学习。
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:
理解圆周率,能计算圆的周长。
教学难点:
探索并理解圆的周长与直径的商为定值。
教学准备:
大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:
自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
教学内容:
教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题
教学目标:
1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。
2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。
3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。
教学重点:
理解并掌握圆的周长的计算公式
教学难点:
推导圆的周长公式
教学过程:
一、教学例4。
1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。
2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?
3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?
4.课件演示车轮滚动,验证学生的发现。
5.全班交流
你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)
二、教学例5。
1.课件出示例5,全班交流:这样的实验你们课前做了吗?
2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。
周长/cm 直径/cm 周长除以直径的商
(保留两位小数)
3.指名汇报,全班交流。
⑴ 各小组派一名同学展示实验记录单,介绍实验过程。
⑵ 纵观各组的实验结果,你们有什么发现?
圆的周长总是直径的3倍多一些。
4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。
5.概括圆周长公式。
⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?
学生先在小组内交流再全班交流。
(板书:Cd=,C=d ,C=d)
⑵ 求圆的周长用哪个公式?(C=d或C=2r)
三、巩固拓展
1.完成试一试
⑴ 学生独立计算。⑵ 全班展示交流。
2.完成练一练。
3.完成练习十四第1题。
学生独立计算,再全班交流。
4.完成练习十四第2题。
⑴ 学生独立计算。
⑵ 全班展示交流。
⑶ 学生订正。
5.完成练习十四第3题。
指名口头列式,学生集体计算。
交流:为什么求是车轮的周长?
6.完成练习十四第4题。
学生独立计算后再汇报交流。
四、总结延伸
本节课,你有哪些收获?还有什么疑问?
教学内容:圆的周长
内容分析 :通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。
学生起点 :对圆和周长的概念已有初步的认识
教学目标: 1、理解圆周长的概念,理解圆周率的意义。
2、使学生掌握圆周长的计算公式及公式的推导过程。
3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。
4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。
教学重点 :圆周长公式的推导。
教学准备 :直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。
教学流程:
一、复习引入
1、学生说圆的认识;
(你对圆的知识有哪些了解)
2、揭示课题:
今天我们要一起来学习圆的周长。(板书:圆的周长)
二、新授
1.认识圆的周长;
(1)师拿出圆片让学生指出圆的周长;
(哪一部分是圆的周长)
(2)描出两个规格不同的圆的周长;感受圆的周长;
(请你描出练习纸上两个圆的周长。)
(哪一个周长长?)
(3)揭示圆周长的概念;
(用自己的话说说什么是圆的周长)
师小结:围成圆的曲线的长叫做圆的周长;
围成圆的一周的长叫做圆的周长。(幻灯出示)
2、理解、运用圆周长的测量方法。
师问:圆的周长长短不一,该怎么测量?
生边演示测量圆片周长,边介绍绳测法。
要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。
学生汇报测量结果,师记录。
圆片测量记录单:
3.探究圆的周长与直径的关系。
(1)猜测跟圆周长相关的量;
(猜测一下,圆的周长长短跟什么量有关?)
计算记录单中周长与直径的比值,得数保留两位小数;
学生反馈比值;
周长(厘米)
直径(厘米)
周长与直径的比值(得数保留两位)
(2)认识圆周率
①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。
(板书:圆周率 π )
②幻灯片展示圆周率的由来,学生自主阅读;
总结圆周长的计算公式。
①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?
提示:从测量记录单中找取。
②如果周长用C表示,字母式是怎样的?
③周长跟半径又是怎样的关系呢?字母式呢?
(板书:圆周长=圆周率×直径 C=πd 或
圆周长=2×圆周率×半径 C=2πr
三、巩固练习
基本练习
一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。
只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:
两个小朋友同时同速从A点到B点,谁先到达?
B
A
四、总结:学习了这堂课你有哪些收获?
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、引课
(课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?
对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。
今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?
对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)
二、认识周长
1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)
师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。
2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说
3、那你们想圆是由什么线围成的呢?(曲线)
师:那我们可以说围成圆一周的曲线的长,就是圆的周长。
4、那谁有测量圆周长的方法?(绕线发,滚动法)
5、小组合作
请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?
要求:
1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。
2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。
3)请同学们小组分工,合作完成(3分30秒)
6、我想问问大家,你们是怎样得到圆的周长的?
谁愿意到前面来给大家讲一讲,拿着你手里的圆
生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)
生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)
生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)
7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。
8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。
(生;非常大的和非常小的都不可以)
9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)
其实,我们大家都做过这个实验是不是?看好了!(转动小球)
10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)
三、探究周长与直径的关系
1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长
2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)
有说半径,有说直径,能说说你的理由吗?(指名说一说)
同学们都觉得和半径或直径有关系。
3、课件:请同学们认真的看大屏
这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)
对,是这个直径是1分米的圆的周长。
再看(展开直径是0.8、0.6分米圆的周长)
4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)
那看来确实直径可以决定圆的周长,是这样吗?
5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)
6、为什么找倍数关系?(因为正方形的周长是边长的4倍)
你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。
(这个小组非常好,有人测量,有人记录,有人计算,分工明确)
填完之后,互相说一说你发现了什么。
7、展示一个小组的数据
1)其他组也计算出来了是吧,我们不再往黑板上写了。
2)有没有算出来和黑板上不一样的?
3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)
四、圆周率
1、那你们讨论出周长和直径的关系了吗?(3倍多一些)
2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)
这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系
3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)
4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)
5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示
6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。
通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)
7、师:刘徽:也是研究出了圆周率的关系
祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?
8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)
那现在谁知道怎么计算圆的周长?能得出什么样的公式?
字母公式:C=d
知道半径怎么求周长?C=2r
小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号