日期:2022-01-22
这是多项式乘多项式教案北师大说课,是优秀的数学教案文章,供老师家长们参考学习。
尊敬的各位评委、老师,大家好!今天我说课的题目是《多项式与多项式相乘》。
一、教材分析
1、 本节课的内容和地位
课标要求:理解多项式与多项式相乘的法则,并运用法则进行准确运算。
选用教材:选自华东师范大学出版社出版的《数学》八年级上册第十三章第3节。课题是《多项式与多项式相乘》,课时为1课时。
主要内容:多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
教材地位:本课学习多项式与多项式相乘的法则,对学生初中阶段学好必备的基础知识与基本技能、解决实际问题起到基础作用,在提高学生的运算能力方面有重要的作用。同时,对平方差与完全平方公式的应用以及杨辉三角等后续教学内容起到奠基作用。
2、教学目标
知识与技能目标:理解并掌握多项式乘以多项式的法则,能够按步骤进行简单的`多项式乘法的运算。
过程与方法目标:
1、通过创设情景中的问题的探索,体验数学是一个充满观察、归纳的过程;
2、通过整体处理,再利用分配律的结果与几何图形面积的结果进行比较,培养学生从不同的角度思考数学的意识;
3、通过为学生提供自主练习的活动空间,提高学生的运算能力;
4、借助具体到一般的认知规律,培养学生探索问题的能力和创新的品质。
情感、态度与价值观目标:
学生通过主动参与探索法则和拓展探索等的学习活动,领悟转化思想,体会数学与生活的联系,感受数学的应用价值,从而激发学习数学的兴趣。
3、教学重点:多项式乘以多项式法则的理解和应用;
4、教学难点:将多项式与多项式的乘法转化为单项式与多项式的乘法,防止漏乘、重复乘和看错符号。
二、教学对象分析
本节课是在学习了“单项式与多项式相乘”的基础上进行的,学生已经掌握了“单项式与多项式相乘”的运算法则,因此没有把时间过多地放在复习旧知上,而是让学生亲身参加探索发现,从而获取新知。在法则的得出过程中,让学生在探索的过程中自己发现总结规律,提高了学生的积极性。在法则的应用这一环节选配一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。
三、教学方法
注重体现教师的导向作用和学生的主体地位。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习。
四、学法
1、自主学习归纳
2、小组讨论
多项式与多项式相乘的基础是单项式与多项式乘法法则,在此基础上从几何代数两个角度去探索多项式与多项式相乘的法则,然后能熟练运用,使学生进一步感受数形结合的魅力。
本节课由计算绿地面积出发,通过几种不同的'计算图形面积方法,得出多项式相乘的法则,整个教学过程的主线和重点定在学生如何自主地探索多项式乘法法则的程以及如何熟练运用法则解决问题。由于采用了合作探索学习的教学方法,充份调动了学生学习的积极性。教师不仅是教给学生知识,还要重视学习方法的指导和培养。例题由3小题组成,由浅到深,老师只作方法的引导,提醒注意符号处理、不能漏乘,主要由学生按照多项式相乘的法则自己解决,虽然学生反馈效果不可避免出现错误,但由于及时评讲、纠正,学生在做练习时出现错误大大减少。
这节课的不足之处是:
(1)练习2根据计算结果找规律时,学生感觉难度较大,部份学生不能用语言组织规律。
(2)括号前是负号的两个多项式相乘,出现忘记变号的现象较多,需要加强练习,巩固效果。
一 教材分析:
《整式的乘除与因式分解》是《整式的加减》的后续学习,同时也是初中代数关于式的学习的重要内容。教材首先从幂的运算性质入手,在学生掌握幂的运算性质的基础上利用乘法分配律及幂的运算性质研究了单项式与单项式的乘法法则,使学生从根本上掌握了整式的乘法法则;而本节课所研究的《多项式与多项式相乘》本质上只是单项式与多项式相乘的应用与推广,因此在本课教学中注重的应是学生对法则的应用与理解,由此培养学生对知识转化的能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。多项式乘以多项式的学习既是前面学习的综合应用,又是后续学习的基础,本节课教学质量的好坏将直接影响着学生的后续学习。
二 学情分析:
学生在熟练掌握幂的运算性质的基础上,已能较准确的进行单项式与单项式相乘的运算。而单项式与多项式相乘的法则的引入与本节课学习的法则比较相似,学生还是比较容易接受的。但是由于法则的增多,计算难度加大,学生计算的准确性可能会降低。
三 教学目标:
1、知识与技能:在熟练掌握单项式乘以单项式、单项式乘以多项式的基础上,探索多项式与多项式相乘的乘法法则,并能运用该法则进行运算。
2、过程与方法:让学生经历探索、讨论、交流的过程,体会转化的思想在整式乘法中的应用。
3、情感态度与价值观:通过探究多项式乘法运算法则,让学生获得成功的体验,锻炼克服困难的意志,建立自信心,体会数学的实用价值,发展有条理思考问题的能力和语言表达能力。
四 教学重难点:
重点:多项式与多项式乘法法则及其应用。
难点:探索多项式与多项式相乘的乘法法则, 体会转化思想在整式乘法的应用。
五 教学方法:
启发探究 讲练结合
六 教学过程:
(一)复习旧识,引入新课
1、单项式与单项式相乘的法则
2、单项式与多项式相乘的法则
3、①(-3x2y)(-5x4y2z4) ②(-3ab2)(-4a+3ab-2)
(设计意图:多项式乘以多项式的乘法运算主要是通过乘法分配律将它转化为单项式与多项式,单项式与单项式的乘法运算,应适当复习回顾。)
由乘法分配律,我们知道 m(c+d)=mc+md,如果将m换成(a+b),你能计算(a+b)(c+d)吗?这就是今天我们需要探究的问题——多项式乘多项式。
(二)合作交流,探索新知
问题:为了知道教室的透光,通风是否符号要求,需测算窗子的面积,现量得一个窗子的尺寸,如图所示,那么你有几种计算这个窗子面积的途径,可有几种不同的算式呢?他们之间有什么联系吗?
a
b
m
n
am
an
bn
bm
算法一:把窗子看成上下两个大长方形,面积是(a+b)n+(a+b)m
算法二:把窗子看成左右两个大长方形,面积是a(m+n) +b(m+n)
算法三:把窗子看成四个小长方形,它们的面积分别为an,am,bn,bm,窗子的面积是an+am+bn+bm,
算法四:把窗子看成一个大长方形
长为(a+b),宽为(m+n),面积是(a+b)(m+n)
因此有(a+b)(m+n)=am+an+bm+bn
(设计意图:从实际背景出发,让学生初步认识多项式与多项式相乘的几何意义,为下一步乘法公式的导出做准备。)
计算(a+b)(m+n),还可以把m+n看成一个整体,运用单项式与多项式相乘的法则,得(a+b)(m+n)
=a(m+n)+b(m+n)
=am+an+bm+bn
换一种看法,(a+b)(m+n)的结果可以看作由a+b的每一项乘m+n的每一项,再把所得的积相加而得到的。
(设计意图:利用整体思想把多项式乘多项式转化为已学的单项式乘多项式,进而回归到单项式乘单项式,便于学生理解多项式乘多项式法则的本质来源。)
多项式与多项式相乘的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
(三)运用知识,尝试解题
例1 计算:
(1)(x+2)(x-3) (2)(3x-1)(2x+1)
解:(1) (x+2)(x-3)
=x﹒x-3x+2x-6
=x2-x-6
(2) (3x-1)(2x+1)
=6x2+3x-2x-1
=6x2+x-1
(设计意图:学以致用,通过例题巩固法则,引导学生发现做题时需注意的事项,并引导学生寻找规律。)
注意事项:①式中每一项都包含它前面的性质符号“同号得正,异号得负” 。
②在没有合并同类项之前,两个多项式相乘后的项数是这两个多项式项数之积。
③展开式中有同类项的要合并同类项。
发现规律:多项式乘以多项式,展开后项数很有规律,在合并同类项之前,展开式的项数恰好等于两个多项式项数的乘积。该规律能验证多项式与多项式相乘的展开式中不会出现漏乘。
随堂练习
【练习1】计算(学生板演)
①(m+2n)(m-2n) ②(2n+5)(n-3) ③(2a+b)2
评析:③(2a+b)2=(2a+b)(2a+b)
=
=
例2:小东找来一张挂历画包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小东想用纸将课本封面与封底的每一边都包进去m厘米。问小东应在挂历画上裁下一块多大面积的长方形?
解:裁下长方形的面积为
(a+2m)(2b+c+2m)=2ab+ac+2am+4bm+2mc+4
【练习2】计算:(学生板演)
(1) (2)
(设计意图:让学生用所学知识解决实际生活中的问题,加深学生对法则的应用和理解,既调动了学生的学习积极性,又让学生获得了知识。随之加以同步练习,便于学生巩固新知。)
例3:已知(x-p)(x-1)的乘积中不含一次项,求p的值。
解:
项系数为: - (p+1)=0 ∴ p=-1
变式训练:如果( )( )的乘积中不含 和 的项,求b、c的值。
解:原式=
项系数为:c–3b+8=0
项系数为:b–3=0 ∴ b=3 , c=1
(设计意图:设置阶梯式练习,符合学生身心发展的规律,培养学生勤于思考、善于动脑的良好学习习惯,并让学生感受新旧知识之间的紧密联系。)
(四)课堂小结:
1、通过本节课的探讨学习,你获得了哪些新的新识?你认为自己有哪些方面的进步?
2、关于“多项式乘多项式”你还有什么问题?
师生活动:学生发言,互相补充,教师点评并总结完善。
总结:1、多项式乘多项式的法则:先用多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
2、多项式乘以多项式的注意点:
(1)运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行,通常是选择一个多项式的一项乘遍另一个多项式的每一项,再选定另一项乘遍另一个多项式的每一项。
(2)多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号。
(3)多项式与多项式相乘,仍得多项式。在合并同类项之前,积的项数应等于两个多项式的项数之积。
(4)计算中如有同类项,则应合并同类项,得出最简结果.
(设计意图:培养学生反思的习惯,鼓励学生对问题进行质疑和概括。)
(五)布置作业
课本62页,习题8.2 第7题、第8题、第9题
(六)评价与反思
附:板书设计
电脑投影展幕
多项式与多项式相乘
1、乘法法则
2、(a+b)(m+n)=am+an+bm+bn
例题与练习
一、知识结构
二、重点、难点分析
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到
然后再次运用单项式与多项式相乘的法则,得到:
2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
三、教法建议
教学时,应注意以下几点:
(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,
积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的
,
等等,能够直接写出结果.
教学设计示例
一、教学目标
1.理解和掌握单项式与多项式乘法法则及其推导过程.
2.熟练运用法则进行单项式与多项式的乘法计算.
3.通过用文字概括法则,提高学生数学表达能力.
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.
5.渗透公式恒等变形的和谐美、简洁美.
二、学法引导
1.教学方法:讨论法、讲练结合法.
2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.
三、重点、难点及解决办法
(一)重点
多项式乘法法则.
(二)难点
利用单项式与多项式相乘的法则推导本节法则.
(三)解决办法
在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片、长方形演示纸板.
六、师生互动活动设计
1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.
2.尝试从多角度理解多项式与多项式乘法:
(1)把看成一单项式时,
.
(2)把看成一单项式时,
.
(3)利用面积法
3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.
4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.
七、教学步骤
(一)明确目标
本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.
(二)整体感知
多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理
(三)教学过程
1.创设情境,复习导入
(1)回忆单项式与多项式的乘法法则.
(2)计算:
①②
③④
学生活动:学生在练习本上完成,然后回答结果.
【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.
2.探索新知,讲授新课
今天,我们在以前学习的基础上,学习多项式的乘法.
多项式的乘法就是形如的计算.
这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.
学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.
【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.
3.总结规律,揭示法则
对于的计算过程可以表示为:
教师引导学生用文字表述多项式乘法法则:
多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.
如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.
学生活动:在教师引导下细心观察、品味法则.
【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则
,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.
这个法则还可利用一个图形明显地表示出来.
(1)这个长方形的面积用代数式表示为_____________.
(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为_______.
结论:即.
学生活动:随着教师的演示,边思考,边回答问题.
【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.
4.运用知识,尝试解题
例1计算:
(1)(2)
(3)
解:(1)原式
(2)原式
(3)原式
【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.
例2计算:
(1)(2)
学生活动:在教师引导下,说出解题过程.
解:(1)原式
(2)原式
【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.
5.强化训练,巩固知识
(1)计算:
①②
③④
⑤⑥
(2)计算:
①②
③④
⑤⑥
⑦⑧
学生活动:学生在练习本上完成.
【教法说明】本组练习的目的是:①使学生进一步理解法则,熟练运用法则进行计算.②训练学生计算的准确性,培养计算能力.③对乘法公式先有一个模糊印象,为以后的学习打下基础.
(四)总结、扩展
这节课我们学习了多项式乘法法则,请同学们回答问题:
1.叙述多项式乘法法则.
2.谈谈这节课你的学习体会.
学生活动:学生分别回答上述问题.
【教法说明】通过让学生自己谈学习体会,既可以达到总结归纳本节知识的目的,形成完整印象,又可以提高学生的总结概括能力.
八、布置作业
P120A组1.(1)(3)(5)(7),2.(2)(3),3.(1)(3)(8).
参考答案
1.(1)原式
(3)原式
(5)原式
(7)原式
2.(2)原式
(3)原式
3.(1)原式
(3)原式
(8)原式
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号