日期:2022-01-23
这是实际问题与方程,是优秀的数学教案文章,供老师家长们参考学习。
一、教学目标
【知识与技能】
理解实际问题中的等量关系列出等式,掌握解方程的方法。
【过程与方法】
经历列方程解决实际问题的过程,进一步提高分析问题、解决实际问题的能力。
【情感态度与价值观】
体会数学与实际生活的密切联系,激发学习数学的学习兴趣,培养对数学的亲近感。
二、教学重难点
【重点】
掌握方程的解法。
【难点】
正确分析等式中的等量关系。
三、教学过程
(一)导入新课
设置情境引入本节课题
设置问题:张大爷2018年养了兔子50只,比2017年养殖的2倍还少16只,问张大爷2017年养殖兔子多少只?
引导学生观察问题,并将学生分组,讨论上面问题,再请学生代表回答,学生都是从2018年的基础上,通过题目条件推出2017年的养殖量,教师再提出,如果从2017年的基础上出发,怎么解决这个问题,进而板书标题“实际问题与方程”
(二)生成新知
教师解答:先设2017年养殖兔子的数量是x只,那么根据题目条件,2018年的养殖数量是2x-16只,那么就有2x-16=50,解得:x=33(只)
总结规律:实际问题问什么就设什么,然后找出题目中的数量关系列出等式,通过方程来解决问题。
(三)巩固练习
小明在跳高比赛中,破纪录了,成绩为4.21米,超过原纪录0.06米,问:学校原跳远记录是多少?(利用方程来解决问题)
(四)小结作业
小结:通过提问的方式,引导学生自主思考本节所学知识点,教师再给予补充。
作业:
对比性练习:1.商店有花布80米,比红布的3倍多6米,红布多少米?
2.商店有红布82米,红布比花布的3倍多6米,花布多少米?
四、板书设计
教学目标
知识与技能:
使学生初步理解和掌握列方程解决一些简单的实际问题的步骤,掌握bx -a等这一类型的简易方程的解法,提高解简易方程的能力。
过程与方法:
让学生借助直观图自主探究,分析数量之间的等量关系,并正确地列出方程解决实际问题,培养学生的主体意识、创新意识以及分析、观察和表达能力。
情感、态度与价值观:
使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。
教学重难点
教学重点:
正确设未知数,找出题目中的等量关系,会列方程,并会解方程。
教学难点:
根据题意分析数量间的相等关系。
教学工具
课件、多媒体.
教学过程
教学过程设计
1 谈话引入
1、解下列方程:
x +0.06=4.21 x+0.08=1.53 2x -4=20
2x +2.8×2=10.4 x +2.4x=5.1 0.25x +0.2x=4.5
2、分析数量关系并写出来:
(1)我们班男生比女生多8人。
(2)小明跳远超过原记录0.08米。
(3)小明身高比去年高了200px。
(4)足球上白色皮比黑色皮的2倍少4块。
(5)地球上海洋面积为陆地面积的2.4倍。
学习方程的目的是为了利用方程解决生活中的问题,这节课我们就来一起学习如何用方程解决问题。
板书课题:实际问题与方程
2 探究新知
一、学习例1:
1、教师多媒体出示教材第73页例1的情境图。
小明破纪录了,成绩为4.21米,超过原纪录0.06米,学校原纪录是多少米?
2、教师讲解如何列方程解答。
①题目中的等量关系是什么?
(学校原记录+0.06米=4.21,写出所有的等量关系)
②如何列方程?
(x+0.06=4.21)
③解方程。 (x=4.15)
④检验,写出答语。
(如何检验?把结果代入原方程,看看左右两边是否相等。)
3、学生小组讨论列方程的步骤、关键,汇报交流
引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答语。
4、完成教材第73页“做一做”的第(1)小题,第(2)小题。。
同桌左边同学完成1题,右边同学完成2题。
小小提醒:①单位要统一;②解方程要检验。
(1. 200px=0.08m 设小明去年身高x m. x+0.08=1.53 x=1.45 )
(2. 半小时=30分 设平均每分钟浪费x kg水 30x=1.8 x=0.06 )
5、全班讲评,订正。
二、学习例2、例3、例4
1、教师多媒体出示教材第74页例2的情境图。
仿照例1,按照刚才的解题步骤完成:(1名同学黑板上板演,其他同学做一做)
等量关系:黑色皮的块数×2-4=白色皮的块数
设共有x块黑色皮。
2x-4=20 x=12
2、评定
解方程时,先把
看做一个整体
3、试一试,独立完成72页第5题。
等量关系:每筒网球的个数×筒数+3=网球总数
方程:5x+3=1428 想一想:这里为什么要加3?
x=285
4、教师多媒体出示教材第77页例3的情境图。
仿照例1和例2,自学例3
小小提醒:根据不同的等量关系,可以列出不同的方程:
苹果的总价+梨的总价=总价钱
两种水果的单价之和×2=总价钱
①设苹果每千克x元。 2x+2.8×2=10.4
②设苹果每千克x元。 (2.8+x)×2=10.4
5、评定
两种等量关系,列两种不同的方程,都可以。
解决同一个问题,我们列出了不同的方程。如果让你选择一个方程,你会选择哪个?说说你的想法。
解这个方程时,应把
看做一个整体?
6、教师多媒体出示教材第78页例4的情境图。
提醒:题目中2个未知数,怎样设呢?
列出不同方程:x+2.4x=5.1 x÷2.4+x=5.1
比较两种设法优劣
解答本题 x=1.5
7、独立完成77页和78页做一做,列出方程,选择其中的1个做一做。
77页做一做,可以有两种列方程法:
2x+2×4=11 (x+4)×2=11
78页做一做,可以有两种列方程法:
设桃树x棵,或者杏树x课
8、全班评定
解方程时,应把 看做一个整体?
选择简便的方法
三、学习例5:
1、教师多媒体出示教材第79页例5的情境图。
同学们小组内讨论:
①题目中的数量有哪些?含义分别是什么?
理解意思(两地 同时 相向 相遇)
②画出线段图
(为什么画线段图呢? 可以清楚地分析数量之间的相等关系)
③找出相等关系,列出方程
这里要用到速度、时间和路程的数量关系来列方程
路程=速度×时间
本题等量关系是:小林骑的路程+小云骑的路程=总路程
0.25x+0.2x=4.5 x=10
④解方程,检验,写出答语。
2、各小组展示,评定
3、做一做,组内完成82页第13题。
设乙队每天开凿x米。 (12.6+x)×25=675 x=14.4
4、全班评定。
3 巩固练习,实践应用
1、第76页练习十六,第8题、第10题。
学生独立完成,老师巡视,完成后小组内讨论,最后老师公布答案 。
2、第82页练习十七,第14题。
学生独立完成,老师巡视,完成后小组内讨论,最后由老师讲解、确定答案。
课后小结
1、这节课学习了什么?方程解应用题的步骤是什么?用方程解决问题应注意哪些问题?小组汇报,教师总结板书:
列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答语。
2、列方程解决问题的关键点是:
①弄清题意,找出未知数,用x表示。
②分析、找出数量之间的相等关系,列方程。
③检验可以在练习本上完成,不必写出步骤
3、本节课易错点是:
①没有设未知数为x,或者明确那个未知数为x。
②列方程错误或解方程错误,没有检验,未能检查错误。
板书
实际问题与方程(1)
解:设学校原跳远纪录是x m。 解题的一般步骤是:
x +0.06=4.21 ①弄清题意,找出未知数,用x表示。
x +0.06-0.06=4.21-0.06 ②分析、找出数量之间的相等关系,列方程。
x =4.15 ③解方程。 检验:…… ④检验,写出答案。
答:学校原跳远纪录是4.15m。
教学目标
1、知识与技能:让学生掌握形如ax±bx=c的方程,掌握设未知数的方法,并会正确地解答。
2、过程与方法:让学生通过乘法分配律来解答形如ax±bx=c的方程。
3、情感、态度与价值观:通过观察、分析、比较的方法,提高学生逻辑思维能力。
教学重难点
教学重点: 教会学生用方程解决实际问题。
教学难点: 分析、找出数量间的相等关系,正确列出方程 。
教学过程
一、复习。
1、解方程。 4X+5=54 3×2.1+2X=13.4 0.3X÷2=9 4(X+8)=20
2、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
(1)分析:本题有两种什么树?它们的数量关系是什么?
(2)独立解答。
二、新授。
教学例4。地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?
问题:从图中你得到了哪些数学信息?
活动要求:读读例题→思考问题→小组讨论→分享展示
1、分析题目的已知条件和问题。今天的题目有2个未知数。为了解答方便,通常设一倍数为X。
2、列方程并解答。
数量关系:陆地面积+海洋面积=地球表面积
方法一:解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
x+2.4x=5.1
方法二:解:设陆地的面积为x亿平方千米。那么海洋面积为(5.1-x) 亿平方千米。
x+(5.1-x)=5.1
方法三:解:设海洋面积为x亿平方千米,那么陆地面积为2.4 ÷x亿平方千米。
(x÷2.4)+ x=5.1
海洋面积÷陆地面积=2.4
方法四: 解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
(5.1-x)÷x=2.4 2.4x=5.1-x
方法五:解:设陆地的面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。
2.4x÷x=2.4
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1
(这是用了什么运算定律?)乘法分配律 让学生自己把方程解完,得X=1.5。
提问:另一个求知数怎样求?根据是什么? 5.1-1.5=3.6
(利用和的关系) 2.4X=1.5×2.4=3.6
(利用倍数的关系) 引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米。 1.5+3.6=5.1 验算海洋面积与陆地面积的倍数关系是否等于2.4。 3.6÷5.1=2.4
答:......
3、练习:将题目中的“地球的表面积为5.1亿平方千米”改为“海洋面积比陆地面积多2.1亿平方千米” 学生独立列方程解答。
数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。
2.4X -X=2.1
(2.4-1)X=2.1
4、比较两道题有哪些相同?哪些不同?
5、小结:今天学习的应用题,是已知两种数量的倍数关系,以及它们的和或差,求这两种数量各是多少?列方程时,通常根据倍数关系,设一倍数为X,另一个数用含有字母的式子表示,再根据这两种数量的和或差,找出数量之间的等量关系,就可列出方程,并解答方程,求出得数。
三、学生独立完成例5 妈妈今年的年龄是我的3倍,妈妈说,我比你大24岁。
问题:能读懂他的想法吗?从题目中他找到了怎样的等量关系?
独立完成, 然后订正,课件出示。
四、完成课本78-79页的做一做
五、小结:
这节课学习了什么?还有什么问题?
六、作业:
P80练习十七中的第5--10题。
板书设计:
稍复杂的方程(三) 数量关系:陆地面积+海洋面积=地球表面积
解:设陆地面积为X亿平方千米,那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1 3.4X=5.1 3.4X÷3.4=5.1÷3.4 X=1.5
教学内容 :
教材P79例5及练习十七第5、11、13题。
教学目标 :
知识与技能:
结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题结
过程与方法:
根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
情感、态度与价值观:
体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:
正确寻找数量间的等量关系式。
教学难点:
创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。
教学方法:创设情境、知识迁移、自主探究、合作交流。
教学准备:多媒体。
教学过程
(一) 复习旧知,导入新课
1.一辆小汽车每小时行80千米,4小时能行多少千米?
2.一辆小汽车4小时行320千米,每小时能行多少千米?
3.一辆小汽车每小时行80千米,行320千米要多少小
时?分别让学生列式并写出三个关系式:路程=速度×时间;
速度=路程÷时间;时间=路程÷速度
【设计意图 利用学生们所熟悉行程问题引出旧知,不仅激起了学生学习新知的兴趣,而且达到了复习旧知的目的。】
(二) 模拟情景,探究新知
1.出示教材第79页例5。
引导学生观察,并思考题中的已知条件和要求的问题是什么?
学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?
【设计意图:让学生通过读题,初步理解题意 】
2.你知道“相向而行”“何时”“相遇” 的含义吗 ?
学生回答“相向而行”就是面对面走来;“何时”就是什么时候;“相遇”就是碰到。
【设计意图:通过对关键词语的理解进一步理解题意 】
3.活动: 学生用手势模拟两人骑车的情景
【设计意图::让学生通过手势比划加深对相遇问题的理解。感受到所谓“相遇”就是两人或两个物体同时从两地出发,相向而行在途中相遇这样一个过程,在学生脑袋里建立一个清晰的相遇问题的模型。】
4.画线段图,教师讲解线段图:
先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。
追问:从线段图中,你知道了什么?
学生交流,汇报:小林骑的路程+小云骑的路程=总路程。
【设计意图:画线段图能让学生深入理解题题意,并找出相应的等量关系 】
5.质疑:现在能不能求出小林骑的路程和小云的路程呢?引导学生汇报:都不能求出,因为他们行驶的时间不知道。
再思考:他们两个行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该也是一样的,可以把他们行驶的时间都设为x 。
【设计意图:让学生明白设哪一个量为x】
6.让学生根据分析,尝试列方程解答问题。
小组交流,汇报,教师根据学生的汇报板书(见板书设计):引导小结:在相遇问题中有哪些等量关系?
板书: 甲行的路程+乙行的路程=总路程
(甲速+乙速)×相遇时间=总路程
【设计意图:让学生明白事物发展的规律,从特殊到一般,从具体到抽象 】
5.对比两种不同的解法,评价学生。
【设计意图:让学生感受到互相合作与交流,并获得成功的乐趣,理解课堂质疑的必要性,并培养了学生质疑的能力。】
(三) 巩固新知,课外延伸。
1.两列火车从相距570千米的两地同时相向开出。甲车每小时行110千米,乙车每小时行80千米。经过几小时两车相遇?【让学生巩固新知,从而达到课外延伸的目的。】
2.两列火车从相距570千米的两地同时相向开出。经过 3小时两车相遇 。甲车每小时行110千米,乙车每小时行多少千米 ? 【设计意图:让学生了解“相遇”问题的解题思路和方法不仅体现在求相遇时间问题上,还可以求速度 】
(四) 反思学法,总结升华
让学生说说本节课自己的收获和感受。这既是对本节课的总结,又是让学生经历一个从知识的输入到输出的过程。
【板书设计】:
实际问题与方程
小林骑的路程+小云骑的路程=总路程
解:设两人x 分钟后相遇。
方法一:0.25x +0.2x =4.5
0.45x =4.5
0.45x ÷0.45=4.5÷0.45
x =1O
方法二: (0.25+0.2)x =4.5
0.45x =4.5
0.45x ÷0.45=4.5÷0.45
x =10
答:两人10分钟后相遇。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号