当前位置:首页 > 教案教学设计 > 数学教案

容积和容积单位教学设计一等奖

日期:2022-01-25

这是容积和容积单位教学设计一等奖,是优秀的数学教案文章,供老师家长们参考学习。

容积和容积单位教学设计一等奖

容积和容积单位教学设计一等奖第 1 篇

  教学目标

  1、使学生理解容积的意义,掌握容积的计算方法,并能正确地计算物体的容积。

  2、使学生认识常用的容积单位升和毫升,掌握单位之间的进率,明确容积和体积的联系与区别。

  3、使学生在探索未知、研讨成果的过成中品味学习的乐趣,培养学生积极、主动探究问题的学习精神。

  重难点:

  建立容积和容积单位的观念是重点;理解容积的意义、感知升与毫升的实际大小是难点。

  教学过程

  一、认识容积、引起兴趣

  (一)复习体积

  1、师:我们已经学习了体积,谁愿意说说什么是物体的体积?(生:物体所占空间的大小叫做物体的体积)

  2、老师拿出一个长方体塑料盒(每个小组一个)说:“谁能说说这个长方体的体积指的是哪?(生:用手比一比)师:这个长方体塑料盒的长是15厘米、宽是10厘米、高是5厘米,你能计算出它的体积吗?”(由学生计算并说明方法)

  (二)教学容积的概念。

  (1)老师将长方体纸盒的.盖子打开,问:盒内是空的,可以装什么?

  师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

  (2)学生举例。

  ①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

  (3)容积的计算方法。

  师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

  师:这是为什么?(出示一个木盒)

  (三)比较容积与体积

  1、老师指着长方体塑料盒说:“刚才我们算出这个长方体塑料盒体积是750立方厘米,我说它能容纳750立方厘米的东西,你们同意吗?

  2、老师往长方体塑料盒里倒入半盒水,师说:“我认为盒里水的

  体积就是这个长方体塑料盒的容积,你们同意吗?

  二、探究计算容积的方法

  教学过程

  备 注

  1、你们还想了解有关容积的哪些知识?

  2、怎样计算容积呢?师拿着刚才那个长方体塑料盒说:“请每个小组拿出这个盒子,我特别想知道这个盒子的容积,你们能帮我想办法计算出这个盒子的容积吗?请同学们先想一想,然后把你的好主意告诉给组里的同学。(独立思考后小组交流)

  3、集体交流(演示操作)

  4、说说怎样求物体的容积?与求体积一样吗?为什么?(计算方法相同、容积的长、宽、高从里面量,体积从外面量)

  三、动手操作了解容积单位

  1、计算容积就要用到单位,你们知道那些容积单位?怎么知道的?

  2、关于容积单位书上有较详细的介绍,请同学们自学23页,我们为每个小组准备了量杯等学具,同学们可以在学习中使用。

  3、汇报(生:学会什么?还有什么不懂的问题?)学生边汇报老师边板书。

  4、根据学生提出的问题集体探讨:

  (1)1升和1毫升的实际多少和它们之间的关系

  a、谁能告诉同学们1升或1毫升的水有多少?(往1升的量杯里倒入水,就知道1升的多少)

  b、请各组量出1升的水,看一看、掂一掂并想象2升、3升的水有多少。

  c、毫升方法同上

  d、刚才有同学问为什么1升=1000毫升,谁能解答这个问题?(实验证明)

  e、出示事物:饮料包装盒让学生估计能容纳多少饮料?

  (2)探讨1升、1毫升与1立方分米、1立方厘米之间的关系

  谁能证明1升=1立方分米:1毫升=1立方厘米

  5、练习:单位换算

  四、运用知识解决问题

  1、计算油箱的容积

  例5:一个长方体油箱,里面长6分米,宽5分米,高4分米。这个油箱可以装汽油多少升?

  (1)学生尝试练习

  (2)小组讨论,探索解题思路

  (3)反馈小结

  2、试一试:一个立方体水箱,从里面量高0.8米,这个水箱能装多少升水?

  五、巩固提高

  1、练一练(1)在括号里填上适当的数。

  2、练一练(2)把调查的结果填在括号中。

  3、练一练的3、4、5、6

容积和容积单位教学设计一等奖第 2 篇

教学目标

1.使学生知道容积的含义.

2.认识常用的容积单位,了解容积单位和体积单位的关系.

教学重点

建立观念,知道容积单位和体积单位的关系.

教学难点

理解容积的含义和升、毫升的实际大小.

教学步骤

一.铺垫孕伏.

1.什么是体积?

2.常用的体积单位有哪些?它们之间的进率是多少?

3. 这个长方体的体积是多少?是怎样计算的?

二.探究新知.

我们已经学习了体积和体积单位,今天我们继续学习一个新的知识:.(板书课题)

(一)建立容积概念.

1.学生动手实验(每四人一组,每组一个有厚度的长方体盒,细沙一堆)

实验题目:计算出长方体盒的体积.

把长方体盒装满细沙,计算细沙的体积.

2.学生汇报结果.

长方体盒的体积:先从外面量出长方体盒的长.宽.高,再计算其体积.

细沙的体积:细沙的体积就是长方体的体积,但要从长方体里面量长.宽.高,再计算其体积.

教师追问:计算细沙的体积为什么要从长方体里面量长.宽.高?

3.师生共同小结.

教师指出:这个长方体盒所容纳细沙的体积,就是长方体盒的容积.我们看见过汽车上的油箱,油箱里装满汽油.这就是油箱的容积.长方体鱼缸里盛满水,它就是鱼缸的容积.

师生归纳:容器所能容纳的物体的体积,就是它们的容积.(板书)

4.比较物体体积和容积的相同和不同.

相同点:体积和容积都是物体的体积,计算方法一样.

不同点:体积要从容器外量长.宽.高;容积要从里面量长.宽.高.

所有的物体都有体积;但只有里面是空的能够装东西的物体,才能计量它的容积.(出示长方体木块)

(二)认识容积单位.

1.教师指出:计量容积,一般就用体积单位.但是计量液体的体积,如药水,汽油等,常用容积单位升和毫升.(板书:升 毫升)

2.出示量杯:这就是1升的量杯.

出示量筒:这就是刻有毫升刻度的量筒.

3.教师演示升和毫升之间的关系:

①认识量筒上1毫升的刻度,找出100毫升的刻度.

②用量筒量100毫升的红色水倒入1升的量杯,一直到量杯满为止.

板书:1升=1000毫升

4.学生演示容积单位和体积单位间的关系:

①把1升的红色水倒人1立方分米的正方体盒里

小结:1升=1立方分米

②把1毫升的红色水倒入1立方厘米的正方体盒里

小结:1毫升=1立方厘米

5.小结:容积单位有哪些?容积单位和体积单位之间有什么关系?

6.反馈练习.

3升=( )毫升 2700毫升=( )升

2.57升=( )毫升 640毫升=( )升

2.4升=( )毫升 3.5升=( )立方分米

500毫升=( )升 760毫升=( )立方厘米

(三)计算物体的容积.

1.教学例1.

一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?

8×5×4=160(立方分米)

160立方分米=160升

答:这个油箱可以装汽油160升.

2.反馈练习.

一个长方体水箱,从里面量长12分米,宽6分米,深5分米,这个水箱可装水多少毫升?

12×6×5=360(立方分米)

360立方分米=360000毫升

答:这个水箱可以装水360000毫升.

三.全课小结.

这节课我们学习了哪些知识?容积和体积有什么不同点?计算容积应注意什么?

四.随堂练习.

1.填空.

(1)( )叫做容积.

(2)容积的计算方法跟( )的计算方法相同.但要从( )是长、宽、高.

(3)6.09立方分米=( )升=( )毫升

1750立方厘米=( )毫升=( )升

435毫升=( )立方厘米=( )立方分米

9.8升=( )立方分米=( )立方厘米

2.判断.

(1)冰箱的容积就是冰箱的体积.( )

(2)一个薄塑料长方体(厚度不计),它的体积就是容积.( )

(3) 立方分米( )

3.选择.

(1)计量墨水瓶的容积用( )作单位恰当.

①升 ②毫升

(2)3毫升等于( )立方分米.

①0.3 ②0.3 ③0.003

4.一种背负式喷雾器,药液箱发容积是14升.如果每分钟喷出药液700毫升,喷完一箱药液需用多少分钟?

五.布置作业 .

1.手扶拖拉机的油箱,从里面量长3分米,宽2.3分米,深1.6分米.这个油箱可以装柴油多少升?每升柴油重按0.82千克计算,装的柴油重多少千克?(得数保留整数)

2.把调查的实际数字填在括号里.

一小瓶红药水是( )毫升.

一瓶墨水是( )毫升

汽车(或拖拉机)油箱的容积是( )升

六.板书设计 .

容器所容纳物体的体积,就叫做它们的容积.

1升=1000毫升 1升=1立方分米 1毫升=1立方厘米

例6.一种汽车上的油箱,里面长8分米,宽5分米,高4分米.这个油箱可以装汽油多少升?

8×5×4=160 (立方分米) 160立方分米=160升

答:这台油箱可以装汽油160升.

容积和容积单位教学设计一等奖第 3 篇

  教学目标:

《容积和容积单位》教案设计

  一、知识与技能

  1、理解容积的含义,体会容积和体积的关系。

  2、认识常用的容积单位,感知建立升和毫升的容积观念。

  3、掌握容积的计算方法,能进行单位之间的换算。

  二、过程与方法

  1、经历容积概念的探究与理解过程。

  2、通过比较,明确容积单位与体积单位的区别和联系。

  三、情感态度与价值观

  1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

  2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

  教学重点:

  建立容积的观念,掌握容积单位之间的进率。

  教学难点:

  理解容积与体积的联系与区别。

  教学过程:

  一、创故事情景

  今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

  二、复习导入

  第一变 回忆

  (1) 什么叫体积?

  (2) 体积单位有哪些?它们之间的进率是什么?

  (3) 体积的计算方法是什么?

  三、探究新知

  第二变 思考

  1、教学容积概念。

  运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

  生:空心的 能装东西的

  师:你在生活中见过哪些空心的,能装东西的物品?

  生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

  师:你想知道这些容器里面能装多少东西吗?

  这就是我们今天学习的内容:容积和容积单位 (板书)

  什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的`容积。

  练习

  根据容积定义判断:

  (1)电饭褒的体积就是它的容积( )

  计量容积一般可以用体积单位( )

  (2)数学书P53页第一题。

  突出:体积 (外面量数据) 容积(里面量数据)板书

  2、教学容积单位:升和毫升

  师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

  生:500毫升 18.9升

  师:升、毫升就是我们今天要学习的容积单位。板书

  生:净含量:250毫升 1升……

  师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

  (选1升和1立方分米来对比,为实验作铺垫)

  回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

  练习:(1)四人小组互相说说各自收集物品的容积。

  (2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

  3、教学容积单位与体积单位之间的换算。

  师:谁知道这两个容积单位之间的进率是多少?生:1000。

  师:你是怎么知道的?

  生:书上写的。

  师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

  由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

  师:从实验中你证实了1升=1000毫升,还得出什么结论?

  生:1升=1立方分米。

  如此类推:你还能推理出什么关系?

  生:1毫升=1立方厘米 1立方米=1000升

  练习:数学书P52做一做第一题和P53第四题

  第三变:计算

  4、教学容积的计算

  出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

  指一名学生读题。(突出容积的计算方法与体积计算方法相同)

  (1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

  (2)学生做完后集体订正。

  第四变:运用

  四、应用知识,解决问题

  咳两声,讲了一节课,老师口干了,很想喝水。

  师:谁知道一个正常人每天要喝多少水才合适才健康?

  生:1500毫升、1000毫升……

  师:你是从哪里知道的?

  生:书里介绍的。

  师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

  小组活动:

  (要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

  (1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

  全班分享

  五、总结质疑

  今天学习了容积和容积单位,你有什么收获?

  六、拓展延伸,发展思维

  作业:

  1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

  2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

  教学反思:

  通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

容积和容积单位教学设计一等奖第 4 篇

  教学目的:

  1、让学生在具体情境中感受并认识容积,联系实际初步形成1升、1毫升的容量观念,通过实验操作体会1升、1毫升有多少。

  2、知道容积和体积的联系与区别,知道容积单位和体积单位之间关系,掌握容积单位之间的进率。

  3、让学生在课前课后的实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣和学好数学的信心,获得积极的数学学习情感和解决实际问题的能力。

  教具准备:

  多媒体课件,一个1升的量杯,一个标有毫升刻度的量筒, 4盒250毫升的牛奶盒,1盒1升的牛奶盒,一个1立方分米的正方体盒子和一袋沙。

  学情分析:

  本课是在学生已经认识了体积以及体积单位的进率的基础上,继续认识容积以及计量液体的体积常用的容积单位升和毫升,认识1升=1000毫升,知道容积和体积的联系与区别,知道容积单位和体积单位之间关系。五年级的学生有了一定的收集信息能力,有意识让学生收集饮料瓶、饮料盒,并先看一看上面的信息。

  教学过程:

  一、复习导入

  1、什么叫体积?

  2、常用的体积单位有哪些?它们之间的关系呢?

  3、怎样计算长方体和正方体的体积?公式呢?

  4、导入课题

  师:展示一盒1升装的牛奶。提问:你会计算这个盒子的体积吗?你知道里面装的是什么?你会计算盒里面牛奶的体积吗?

  师:今天,我们就来学习物体的容积和容积单位。

  二、观察实验——探索新知

  1、感受容积意义

  (1)情境出示集装箱,演示往里面装货物的过程。

  交流:生活中有哪些物体能装些什么?谁来说一说?

  生:碗能装饭。

  生:瓶能装水、油。

  生:箱子、冰箱。

  师:同学们,我们把容纳物体的这些箱子、油桶、仓库等一般称为容器。那么什么叫做物体的容积?你能用自己的话说一说吗?

  这些容器所能容纳物体的体积,通常叫做它们的容积。生活中也有称为容量。

  (2)在量杯里倒入一部分的沙,这部分沙的体积是不是这个量杯的容积?

  把沙倒入量杯并且使之高出量杯口,这些沙的体积是不是这个量杯的容积呢?

  那多少沙子的体积才是这个量杯的容积呢?

  [设计意图:以学生的事实知识与生活经验为基础的教学原则,请学生课前进行必要的观察、感知容器、容积,在课堂上进一步的引导,感悟,从形象思维上升到抽象思维,认识容积的意义。]

  2、探索容积单位

  常用的容积单位有哪些呢?

  一个长方体的仓库里存放着水泥,从里面量仓库长10米,宽8米,高6米,能容纳多少水泥?

  学生讨论后计算汇报:

  10×8×6=486(立方米)。

  仓库的容积等同于一个长方体的体积,但要从仓库里面量长、宽、高,计算长方体的体积用体积单位,计算仓库的容积也就用体积单位。

  计算容积一般用体积单位。容积的计算方法,跟体积的计算方法相同。

  在计量液体体积的时候,就要用到另一种容积单位:升和毫升。

  升和毫升就是我们这节课要认识的容积单位。自学课本,再观察老师桌面上摆的教具,小组交流说说你的认识。

  生:我们在量杯和量筒上,能看到刻有升和毫升的刻度,1升=1000毫升。

  3、验证容积单位和体积单位的联系

  验证1升=1立方分米:展示装了1立方分米砂的正方体盒,把砂倒入1升的量杯,得出1升的量杯容积是1立方分米。从而得出1升=1立方分米。

  让学生根据立方分米和立方厘米以及升和毫升之间的进率关系,交流推导出1毫升=1立方厘米。

  4、生活应用,感悟新知。

  师:重现一盒1升装的牛奶。现在,你会计算这个盒子的体积吗?你会计算盒里面牛奶的体积吗?

  师:这个盒的容积就是这个盒的体积,这句话对吗?为什么?

  盒子的体积指什么?(盒子所占空间的大小。)

  盒子的容积指什么?(盒子所能容纳物体的大小,这里也就是装满了的牛奶的体积。)

  小结:一般说来,物体的容积比体积小。

  巩固新知

  判断下列说法是否正确,对的在()内打√,错的打x。

  ①计算容积或体积都是从容器外面量长、宽、高。

  ②冰箱的容积就是冰箱的体积。

  ③游泳池注满水,水的体积就是游泳池的容积。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号