日期:2022-01-28
这是平方根的有趣引入,是优秀的数学教案文章,供老师家长们参考学习。
一、教学目标
【知识与技能】
理解平方根与算数平方根,会计算一个正数的平方根和算数平方根。
【过程与方法】
经历观察、计算、小组讨论的过程,培养计算能力。
【情感态度价值观】
感受数学的魅力,激发学习数学的兴趣,提升分析问题解决问题的能力。
二、教学重难点
【教学重点】
平方根和算术平方根。
【教学难点】
理解一个正数有且只有两个平方根。
三、教学过程
教学目标:
【知识与技能】
了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教具准备】小黑板 科学计算器
【教学过程】
一、导入
1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数 1.1 平方根
二、新授
(一)探求新知
1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?
2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?
4、有理数和无理数统称为实数。
(二)知识归纳:
1、板书:1.1平方根
2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)
3、怎么算?每块地砖的面积是:10.8 120=0.09平方米。
由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。
4、练习:
由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)
例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。
6、说一说:9,16,25,49的一个平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,还有别的数吗?
2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。
3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)
4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。
5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;
把a的负平方根记作-。
6、0的平方根有且只有一个:0。 0的平方根记作,即=0。
7、负数没有平方根。
8、求一个非负数的平方根,叫做开平方。
(四)巩固练习:
1、分别求下列各数的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)
2、分别求下列各数的算术平方根:100,16/25,0.49。 (10,4/5,0.7)
三、小结与提高:
1、面积是196平方厘米的正方形,它的边长是多少厘米?
2、求算术平方根:81,25/144,0.16
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:
了解平方根的概念,求某些非负数的平方根
学习难点:
了解被开方数的非负性;
学习过程:
一、 学习准备
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32 = ( ) ( )2 = 9
(—3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 = —4
3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与 互为逆运算
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数 有两个平方根,它们互为相反数;
零 有一个平方根,它是零本身;
负数 没有平方根。
交流:(1) 的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
5、平方根的表示方法
一个正数a有两个平方根,它们互为相反数。
正数a的正的平方根,记作
正数a的`负的平方根,记作
这两个平方根合在一起记作
如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数
这里的a表示什么样的数? a是非负数
二、合作探究
1、判断下面的说法是否正确:
1)—5是25的平方根; ( )
2)25的平方根是—5; ( )
3)0的平方根是0 ( )
4)1的平方根是1 ( )
5)(—3)2的平方根是—3 ( )
6) —32的平方根是—3 ( )
2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。
(1) 0.81 (2) (3) —100 (4) (—4)2
(5)1.69 (6) (7) 10 (8) 5
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、检验下面各题中前面的数是不是后面的数的平方根。
(1)12 , 144 ( ) (2)0.2 , 0.04 ( )
(3)102 ,104 ( ) (4)14 ,256 ( )
2、选择题(1) 0.01的平方根是 ( )
A、0.1 B、0.1 C、0.0001 D、0.0001
(2)因为(0.3)2 = 0.09 所以( )
A、0.09 是 0.3的平方根。 B、0.09是0.3的3倍。
C、0.3 是0.09 的平方根。 D、0.3不是0.09的平方根。
3、判断下列说法是否正确:
(1)—9的平方根是—3; ( )
(2)49的平方根是7 ; ( )
(3)(—2)2的平方根是 ( )
(4)—1 是 1的平方根; ( )
(5)若X2 = 16 则X = 4 ( )
(6)7的平方根是49。 ( )
4、求下列各数的平方根
1)81 2)0。25 3) 4)(—6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思维拓展:
1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是
2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。
4、一个数x的平方根等于m+1和m—3,则m= 。x= 。
5、若|a—9|+(b—4)=0,则ab的平方根是 。
6、熟背1至20的平方的结果。
7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?
【《平方根》教案】相关文章:
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;
学习重点:理解算术平方根的概念
学习难点:算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x= ,那么X= ,
这种地砖一块的边长为 m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是 , 叫做4的算术平方根,记作 =2,
2的平方根是“ ”, 叫做2的算术平方根,
3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?
(2)0的算术平方根是什么? 0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1) (2) (3)
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在 中, 表示一个 数, 表示一个 数,算术平方根具有
练习:若a-5+ =0,则 的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;( )②-6是 的算术平方根; ( )
③ 0的算术平方根是0;( ) ④ 0.01是0.1的算术平方根; ( )
⑤一个正方形的边长就是这个正方形的面积的算术平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
思维拓展:
1、一个数的算术平方根等于它本身,这个数是 。
2、若x=16,则5-x的算术平方根是 。
3、若4a+1的平方根是±5,则a的算术平方根是 。
4、 的平方根等于 ,算术平方根等于 。
5、若a-9+ =0,则 的平方根是
6、 的平方根等于 ,算术平方根是 。
7、 求xy算术平方根是。
数学小知识——怎样用笔算开平方
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第 二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264, 12.5平方根的'过程。自己举例试试!
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号