日期:2022-01-28
这是平方差公式课本内容,是优秀的数学教案文章,供老师家长们参考学习。
教学目的
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:
公式的应用及推广。
教学过程:
一、复习提问
1、(1)用较简单的代数式表示下图纸片的面积。
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道
hd=bc=gd=fe=a-b,
这样裁开后才能重新拼成一个矩形。希望推出公式:
a2-b2=(a+b)(a-b)
2、(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异。
说明:平方差公式的数学表达式在使用上有三个优点:
(1)公式具体,易于理解;
(2)公式的特征也表现得突出,易于初学的人“套用”;
(3)形式简洁。但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。因而也就“欠”明确(如结果不知是谁与谁的平方差)。故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。
3、判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)
一、内容和内容解析
《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.《平方差公式》的优秀教学设计
本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.
二、目标和目标解析
目标
1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;
2、掌握平方差公式的结构特征,能运用公式进行简单的运算;
3、会用几何图形说明公式的意义,体会数形结合的思想方法.
目标解析
1、让学生经历"特例──归纳──猜想──验证──用数学符号表示"这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.
2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.
3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.
三、教学问题诊断分析
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某些项符号及漏项等问题.学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.
本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.
四、教学过程设计
(一)创设情境,引出课题
问题1:计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=;
(2)(m+2)(m-2)=;
(3)=;
(4)(2x+1)(2x-1)=.
【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式--平方差公式.
(二)探索新知,尝试发现
问题2:依照以上四道题的计算回答下列问题:
①式子的左边具有什么共同特征?
②它们的结果有什么特征?
③能不能用字母表示你的发现?
师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:.
【设计意图】根据"最近发展区"理论,在学生已掌握的'多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理.
(三)数形结合,几何说理
问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系.
【设计意图】通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:,验证了其公式的正确性.
(四)总结归纳,发现新知
问题4:你能用文字语言表示所发现的规律吗?
两个数的和与这两个数的差的积,等于这两个数的平方差.
【设计意图】鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力.
(五)剖析公式,发现本质
在平方差公式中,其结构特征为:
①左边是两个二项式相乘,其中"a与a"是相同项,"b与-b"是相反项;右边是二项式,相同项与相反项的平方差,即;
②让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能代表数或式.
【设计意图】通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果.
(六)巩固运用,内化新知
问题5:判断下列算式能否运用平方差公式计算:
(1)(2x+3a)(2x– 3b);(2);
(3)(-m+n)(m-n);(4);
(5);(6).
【设计意图】学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.巩固平方差公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解.
问题6:判断下列计算是否正确:
(1)(2a– 3b)(2a– 3b)=4a2-9b2
(2)(x+2)(x– 2)=x2-2
(3)(-3a-2)(3a-2)=9a2-4
(4)
【设计意图】对学生常出现的错误,作具体的分析,以加深学生对公式的理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件.
问题7:计算:
(1)(2x+3)(3x-3);(2)(b+2a)(2a-b);(3).
解:(1)(2x+3)(2x– 3)=(2x)2-32=4x 2-9
(2)(b+2a)(2a-b)
=(2a)2-b2
=4a2-b2
(3)
=
=
【设计意图】解决操作层面问题.可提议用不同方法计算,以体现学生的创造性.
(七)拓展深化,发展思维
问题8:计算:
(1)98×(-102);(2).
【设计意图】把相乘两数转化成两数和与两数差的乘积形式,此题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,注意不能用公式的仍按多项式乘法法则进行.
问题9:小明家有一块"L"形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.
【设计意图】运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习了有用的数学,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解.
(八)小试牛刀,挑战自我
1.计算:
2.在下列括号中填上合适的多项式:
3.看谁算得快:
【设计意图】设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.第2个填空题有两种填法,属开放设计.目的是加强学生对公式结构特征的理解,同时也锻炼学生的发散思维.
(九)总结概括,自我评价
问题10:这节课你有哪些收获?还有什么困惑?
【设计意图】从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识.
(十)课后作业
必做题:P156习题15.2 1
选做题:1.,则A的末位数是_.
2.计算:(1);
(2);
(3);
(4).
【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.
教学建议
数学教案-平方差公式
一、知识结构
二、重点、难点分析
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
三、教法建议
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的`平方差,而另两项恰是互为相反数,合并同类项时为零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2
↓ ↓ ↓ ↓ ↑ ↑
(a + b)(a - b)=a2- b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标
1.使学生理解和掌握平方差公式,并会用公式进行计算;
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
教学过程 设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例 变式练习
例1 计算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2 计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习
运用平方差公式计算:
(l)(x+a)(x-a); (2)(m+n)(m-n);
(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).
例3 计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习
1.口答下列各题:
(l)(-a+b)(a+b); (2)(a-b)(b+a);
(3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业
1.运用平方差公式计算:
(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);
2.计算:
(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
(3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).
数学教案-平方差公式
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
三、教法建议
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2
(a+b)(a-b)=a2-b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标
1.使学生理解和掌握平方差公式,并会用公式进行计算;
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习
运用平方差公式计算:
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业
1.运用平方差公式计算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);
2.计算:
(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号