当前位置:首页 > 教案教学设计 > 数学教案

平面向量的应用问题易错点

日期:2022-01-30

这是平面向量的应用问题易错点,是优秀的数学教案文章,供老师家长们参考学习。

平面向量的应用问题易错点

平面向量的应用问题易错点第 1 篇

一、教学目标:掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题.

二、教学重点:向量的性质及相关知识的综合应用.

三、教学过程:

(一)主要知识:

1. 掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题.

(二)例题分析:略

四、小结:

1.进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2.渗透数学建模的思想,切实培养分析和解决问题的能力.

五、作业:略

平面向量的应用问题易错点第 2 篇

  教学准备

  教学目标

  1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;

  2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;

  3.让学生深刻理解向量在处理平面几何问题中的优越性.

  教学重难点

  教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.

  教学难点:如何将几何等实际问题化归为向量问题.

  教学过程

  由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

  例1、平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?

  思考:

  运用向量方法解决平面几何问题可以分哪几个步骤?

  运用向量方法解决平面几何问题可以分哪几个步骤?

  “三步曲”:

  (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

  (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;

  (3)把运算结果“翻译”成几何关系.

平面向量的应用问题易错点第 3 篇

一、教学内容分析

向量作为工具在数学、物理以及实际生活中都有着广泛的应用.

本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.

二、教学目标设计

1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.

2、了解构造法在解题中的运用.

三、教学重点及难点

重点:平面向量知识在各个领域中应用.

难点:向量的构造.

四、教学流程设计

五、教学过程设计

一、复习与回顾

1、提问:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[说明]复习数量积的有关知识.

二、学习新课

例1(书中例5)

向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看

例2(书中例3)

证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.

证法(二)向量法

[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)

例3(书中例4)

[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.

二、巩固练习

1、如图,某人在静水中游泳,速度为 km/h.

(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?

答案:沿北偏东方向前进,实际速度大小是8 km/h.

(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

答案:朝北偏西方向前进,实际速度大小为km/h.

三、课堂小结

1、向量在物理、数学中有着广泛的应用.

2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.

四、作业布置

1、书面作业:课本P73, 练习8.4 4

平面向量的应用问题易错点第 4 篇

教学目标:

运用向量的有关知识对物理中的问题进行相关分析和计算,并在这个过程中培养学生探究问题和解决问题的能力

教学重点:

运用向量的有关知识对物理中的问题进行相关分析和计算

教学过程

除课本提供的材料外可补充:

1两根等长的绳子挂一个物体,绳子受到的拉力大小与两绳子间的夹角的关系

分析:

①作图引导学生进行受力分析(注意分析对象);

②引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识,得出:

③讨论:

当逐渐增大时,的大小怎样变化?为什么?

当为何值时,最小,最小值是多少?

当为何值时,?

如果,在什么范围时,绳子不会断?

请同学们自行设定与的大小,研究与的关系?

利用结论解释教材上给出的两个物理现象

作出简单的受力分析图,启发学生将物理

现象转化成模型

2速度与分解问题

一条河的两岸平行,河的宽度d=500m,一艘船从A处出发航行到河的正对岸B处船航行的速度,水流速度那么,与的夹角(精确到)多大时,船才能垂直到达对岸B处船行驶多少时间(精确到01min)

分析:速度是向量

1启发学生思考:如果水是静止的,则船只要取垂直于河岸的方向行驶就行了由于水的流动,船被冲向下游,因而水速的方向怎样的呢?

2再启发学生思考:此问题要求船实际的行进方向是垂直指向对岸的,这是合速度的方向还是的方向?为什么?

3启发学生画出和的方向,思考一下向量-的方向如何确定?

4启发学生利用三角形法则作出-(即),再把的起点平移到,也可直接用平行四边形法则作出

5让学生完成的计算(注意和的方向垂直)

即,

=,

6让学生完成当船要到达图中的和,且分别为时,对应的分别是多少?

(1)求: 或

(2)求: 或

6组织学生讨论思考

,是否船垂直到达对岸所用时间最少?为什么?

小结:运用向量的有关知识对物理中的问题进行相关分析和计算

课堂练习:第121页练习A、B

课后作业:第131页A 5

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号