日期:2022-01-21
这是概率教学方法的研究,是优秀的数学教案文章,供老师家长们参考学习。
概率教学方法的研究第 1 篇
《概率》这一章主要教学目标是通过学生猜测——试验并收集试验数据——分析试验结果等活动来了解必然事件,不可能事件和不确定事件发生的可能性,了解事件发生的等可能性及游戏规则的公平性,会对古典概型和几何概型发生地概率进行简单的计算。通过课堂教学和作业反馈以及单元检测我有以下感受:
一、学生能够通过观看演示试验来了解三种事件发生的可能性,能通过试验了解游戏规则的公平性和对两种概型进行简单的计算。本章的练习的正确率和单元检测及格率在前四章中是最高的,单元检测及格率达到了70%,相比前三章上升了近40%。
二、通#from 本文来自高考资源网http://www.gkstk.com end#过演示试验及课件大大激发了学生学习的积极性,用生活事例加强概念的理解,培养了学生学习数学的兴趣.在轻松且愉快的教学情境中,学生学习“有用的数学”,应用数学解决了问题。多媒体教学的利用,不但给学生一种活生生的生活情境,而且可以加大信息量,提高课堂效率.
三、教学方式的开放:运用了讨论发现法,让学生参与课堂讨论,自主探索.在知识的学习中,重视知识的形成过程和概括过程;在解决问题中,引导学生多角度进行全面分析.利用小组合作学习的方式,让学生之间建立了相互依存的形式.在小组合作学习的过程中,学生各自发表了自己的见解,互相评价,互相完善,在自主探索中发现概念的形成过程,提升学生的整体认识水平。
四、存在的问题
1、教具的缺乏导致学生不能亲自动手试验,由于没有与教材配套的教具,我只能自制教具,导致“转盘游戏”只能有我演示,学生观看得出结论,使得学生对不确定性体会不深,且由于本人自制教具的能力有限,并不能完全保证转盘能正常工作,使得学生对“转盘”游戏的理解大大降低,为此,我不得不通过口述在加课件演示重复讲解,使学生加深印象。在“掷硬币”游戏中,由于要求试验次数较多,并需统计,学生对此游戏的兴趣不浓,并由于课堂教学时间的限制,在对全班同学试验结果统计并完成折线统计图后剩余时间不多,不得对“做一做”这个游戏压缩时间,让学生不做试验去思考得出结论。在“摸到红球的概率”这个游戏中,由于事前准备的乒乓球数量有限,在分组中每个小组的人数较多,而学生的好奇性很大,导致课堂比较的“乱”,但是效果还是不错,通过试验,学生能过掌握概率的计算公式。对于几何概型的试验——“停留在黑砖上的概率”,我只有通过课件演示给学生看,效果一般。
二、对于课本上读一读讲解的用“Z+Z”做掷硬币实验和小猫跳转实验,我们学校没有相应的“Z+Z”教学软件,学生无法体验,且乡下学生家庭基本无电脑,也无法体验。
总之,本章与他章节学习进行比较的话,本章的学习有一定得趣味性、通过学生能感受到学生发挥了学习的主动性,能取得了较好的课堂效果。
概率教学方法的研究第 2 篇教学目标:
1、使学生初步体验有些事件的发生是确定的,有些则是不确定的。
2、初步能用“一定”、“可能”、“不可能”等词语来描述生活中一些事件发生的可能性,知道事情发生的可能性有大有小,感受数学与生活的联系。
3、通过猜测验证感悟,培养学生的猜测、实验和观察能力。
4、培养学生数学学习的兴趣及反思追问的学习习惯。
教学重点:
通过活动体验有些事件发生的确定与不确定。理解“一定”、“可能”与“不可能”。
教学难点:
理解可能性的大小与条件之间的关系。
教具与学具:
多媒体课件、箱子、乒乓球、统计表、彩笔、题卡等。
教学过程:
一、故事导入、体验可能性。
1、谈话:同学们,这节课老师给大家带来了一位老朋友,如果你能通过老师的描述确定他是谁,就快速地说出它的名字。
教师描述:他是个充满智慧的人,总愿意帮助穷人,他生活在新疆,长着八字胡,总是愿意骑着一头小毛驴。(学生猜是阿凡提)
师:在老师的描述中同学们确定了他一定是阿凡提。
2、(出示图片)大家一定很奇怪,阿凡提怎么被关进大牢了?因为阿凡提总是帮助穷人,不小心冒犯了国王,国王大怒,决定将他处死。阿凡提被关进了死牢,按照法律,死囚在临刑前还有一次选择生死的机会,那就是大法官拿来一个盒子,盒子里有两张纸团,分别写着“生”和“死”。阿凡提如果摸到“生”则生,如果摸到“死”就死。
3、你们认为阿凡提这时摸纸团结果会怎样呢?(先说结果再抽,说清为什么?)(既有可能生,也有可能死,看运气了。)
4、可是国王偏偏要让阿凡提死,于是派人偷偷地把盒中的“生”字拿掉,换成了“死”字,而大法官并不知道。
阿凡提这时摸纸团结果又会怎样?(先说结果再抽,2人,)还用抽吗?为什么?有可能生吗?(不可能生。)
5、有人把这个情况悄悄地告诉了阿凡提。阿凡提想了一夜,终于想出了一个好办法。
6、我们来看看阿凡提是怎么做的:临刑前,当大法官把盒子拿来要阿凡提选择生死时,阿凡提拿起盒中的一个纸团,看也不看迅速地把它吞进肚子里。在场的人不知道他究竟拿了哪张纸。大法官只好命人看看盒子中剩下的纸团,只见上面写着“死”。法官说:“阿凡提一定吞下了‘生’字,他不该死。”法官是怎样判断的呢?(吞下了一个,剩下的一定是“死”。)
7、师小结:阿凡提的命运真是一波三折,盒子中是一生一死两个纸团时,他的命运是(可能生可能死,板书:可能);盒子中改成两个死时,他的命运变成了(一定死,不可能活,板书:一定、不可能);当吞下一个纸团,只剩下一个死时,他的命运变成了(一定活,不可能死)
8、小结:“一定”、“可能”、“不可能”就是这节课我们要学习的数学中的可能性。(板书)
二、判断、描述生活中的确定事件和不确定事件
1、师:生活中有许多事可以用“一定”“不可能”“可能”(指板书)来进行描述,出示例2
2、选词填空,进一步感悟“一定”“不可能”“可能”
3、学生举生活中确定或不确定事件的实例并描述
过渡:刚才是书中收集了身边一些现象让我们来判断,那么生活中还有哪些现象可以用“一定”“不可能”或“可能”来描述呢?
三、游戏探索,理解“可能性大小”
过渡:同学们说了那么多生活中的有关现象,老师也想到了一个游戏,想玩吗?
我们来玩个摸球游戏。
1、游戏一:
(1)(出示一黄一白两球)问:你们喜欢那个颜色?(黄)那我们就来玩个摸黄球的游戏。
(2)(出示四个盒子)问:要想一下子摸出黄球,你选哪个盒子?为什么?(一定会摸到黄球,不可能摸到白球)不可能选哪个呢?为什么?(4号。一定摸到白球,不可能摸到黄球)
过渡:既然4号盒子中不可能摸出黄球,我们把它拿走吧!1号盒子中一定能摸出黄球,摸起来没有什么挑战性,我们把它拿走吧!
(3)问:不可能摸出黄球的盒子和一定能摸出黄球的盒子都去掉了,中间两个盒子呢?(可能)中间的两个盒子都有可能,你选哪个?为什么?(4黄2白,可能性大。揭示可能性有大有小)板书:大、小
(4)师:刚才同学们认为,2种球比较黄球数量多,摸中的可能性大,白球少摸中的可能性小。光猜测行吗?(不行,还要验证。)我们就用4个黄球、2个白球,小组合作研究一下我们所猜测的可能性大小。
(5)小组活动:摸球规则:
1)按顺序每人每次摸一个,记录员记录颜色之后放回,小组一共摸20次。
2)摸球时安静不许偷看盒子里面。每次摸完后组长充分摇晃盒子。
3)统计小组共摸到黄球()次,白球()次。能得到怎样的结论?
汇总结果
(6)现在请每个小组的记录员汇报你们这组摸球的情况。(生边说,师边填表)
2、小结:在摸球游戏中,当盒子中是4个黄球,2个白球时,我们发现什么?(黄球比白球多,摸到黄球的可能性就大)
3、出示3号盒子,问:从3号盒子中摸一个球,摸到哪种颜色球的可能性大?为什么?
师:同学们,通过玩摸球游戏,我们一起经历了猜想————验证—得出结论的过程,下面我们再来玩一个摸球游戏。
四、游戏二:可能性大小发生变化
(1)出示摸球的盒子,(师:这是一个空盒子,)一个一个地放入3个黄球和3个白球。说一说会摸到什么颜色的球?能确定吗?为什么?(学生猜一猜会摸到什么颜色的球,请猜的同学摸一摸。多叫几人)
(2)继续猜一猜,当学生摸出一个球后,把这个球拿出,让学生再猜会摸到什么颜色的球,并摸一摸;当学生摸出一个球后,把这个球又拿出,让学生再猜会摸到什么颜色的球,(多找几人,问:摸到谁的可能性大?)再摸一摸……让学生感悟到在条件变化的情况下,“可能”也会变成“一定”或“不可能”,“一定”或“不可能”也会变成“可能”。可能并不代表一定。(渗透偶然性)
(3)总结:看来,随着条件的变化,可能性的大小也会发生改变。
五、设计游戏,应用“可能性”。
1、师:设计师请你帮忙。中奖规则:转到红色区域就中奖,白色不中奖。
2、师:如果你们是设计师怎样设计这个抽奖转盘呢?(让学生思考一会儿,自己完成)
3、学生设计好后将设计结果贴到黑板上。学生汇报,说清理由。教师将不同设计贴到板书的相应位置。
4、师:在全班同学的努力下同学们设计出了多种方案。看着黑板你能说说你的发现吗?(涂红色的部分多时,中奖的可能性就大;涂红色部分少时,中奖的可能性就小。)涂红色的部分和白色的部分一样多的时候,可能性就相等。是这样吗?在同学们今后的学习中我们再来继续研究吧!
六、全课小结
今天通过游戏与学习,我们知道了用一定可能不可能来描述生活中的现象。下课前,老师再送给大家几句话:理性对待生活中事情发生的可能性:对不可能发生的事情不要痴心妄想;对可能发生的事情不要存在侥幸心理;对一定发生的事情千万要做好准备。
概率教学方法的研究第 3 篇【教学目标】
1.知识与技能:1)掌握随机事件、必然事件、不可能事件的概念。2)了解随机事件发生的不确定性和频率的稳定性,进一步认识随机现象,了解概率的意义;
2.过程与方法:通过经历数学实验,观察、发现随机事件的统计规律性,了解通过大量重复试验,用频率估计概率的方法;
3. 情感、态度、价值观: 通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.
【教学重点】概率的意义.
【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的
发生所呈现出的规律性.
【教学方法】教师启发引导与学生自主探索相结合.
【教学手段】投影和计算机辅助教学.
【教学流程】
考察
概括
【教学过程】
一、创设情境,体会随机事件发生的不确定性
1.展示生活实例1:“麦蒂的35秒奇迹”
从同学们都很感兴趣的篮球比赛说起,介绍比赛最后
时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦
蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的
NBA比赛中的下一个三分球投进了吗?
设计意图 从学生感兴趣的生活实例引入,一方面是为了激发
学生的听课热情,另一方面也是让学生体会学习随机事件及
概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.
2.展示生活实例2:杜丽北京奥运夺金
我们都曾非常关注北京2008奥运会,大家知道这名
中国射击运动员的名字吗?为什么射击比赛中每一枪都
如此扣人心弦呢?
设计意图 奥运会是社会热点话题,可以增强学生的国家自豪感.
3.展示生活实例3:“石头、剪刀、布”
再看发生在我们身边的实例,甲、乙两个同学想看同一
本好书,于是采用“石头、剪刀、布”的方式决定谁先看.那
么能够预先确定甲和乙谁获胜吗?
设计意图 回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.
二、归纳共性,形成随机事件的概念
从数学的角度研究事件时我们主要关注事件是否发生,结果能否预先知道,从结果能够预知的角度看,能够发现以上事件的共同点吗?
设计意图 有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散. 以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,
还能
找到此类的事件吗?有没有不属于此类的事件呢?
通过以上思考,发现事件可以分为以下三类:
必然事件 :在一定的条件下必然要发生的事件;
不可能事件:在一定的条件下不可能发生的事件;
随机事件 :在一定的条件下可能发生也可能不发生的事件.
事件的表示:用大写字母A、B、C??表示
设计意图 在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异. 巩固练习
三、深入情境,体会随机事件的规律性
我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.
同时,我们身边也有一些意外是随机事件,那我们是不是因此而时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,我们是不是就因此而放弃了今天的努力了呢?我们没有,这就说明随着我们在每天的生活中不断地接触随机事件我们对他发生的规律性有了一些感性的认识,那么接下来我们将对此做一些理性思考
设计意图
这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教
师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.
概率教学方法的研究第 4 篇【教学内容】
人教版义务教育课程实验教科书五年级上册6单元可能性。98—102页例1、例2。
【教材分析】
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:
(1)试验的全部可能结果只有有限个,比如说为n个。
(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
【学情分析】
学生在三年级上册已经对可能性有了初步认识。已经对有些事件的发生是确定的,有些则是不确定的现象有了初步体验。同时学生在三年级上册对分数也有了初步认识。本单元内容是在此基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语来表述事件发生的可能性的大小,还要学会通过量化的方式,用分数描述事件发生的概率。
【教学目标】
1、引导学生在学习活动中体验事件发生的等可能性以及游戏规则的公平性之间的因果关系,会求简单事件发生的可能性。
2、能按照指定的要求设计简单的游戏方案。
3、感受可能性在某些事件中随事件的变化而变化。
4、加强对学生概率素养的培养,增强学生对随机思想的理解。通过探究游戏的公平性,在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
【教学重点】
体验事件发生的等可能性以及游戏规则的公平性,用推理的方法找出等可能性与游戏公平性之间的因果关系。
【教学难点】
会求简单事件发生的可能性。
【教学过程】
一、创设情境忆旧引新:
通过模拟摸球的游戏,激发学生的学习兴趣,同时了解学生对可能性的已有认知,即:能
用可能、一定、不可能等描述事件发生的可能性,并能描绘可能性的大小,从而引出本课学习内容。
二、试验验证,探索新知:(体会等可能性与公平之间的联系)
(一)课件:出示踢足球开场的情形:
提问:你认为用抛硬币决定谁先开球公平吗?
学生解释,教师抓出重点词语:机会相等,进行及时的提升。
数学上把机会相等叫做可能性相等,或是等可能性
小结过渡:那你认为出现正面或反面的的可能性是多少呢?引发学生用具体的量表示可能的大小。
学生表达:(50%、1/2、等)
(二)试验探究。通过试验验证抛硬币的公平性。
提问:大家猜想一下,如果让你把一枚硬币重负的掷几次,正面与反面出现的可能性会是多少呢?
生:1/2或不一定
引发是否公平的猜想,从而引导学生进行验证。
1、课件出示试验要求:略
2、小组试验
3、反馈:
通过反馈得出结论:随着实验的次数越来越多,出现正面和反面的可能性就越来越接近1/2。那我们就理性的认为出现正面和反面的可能性是相等的。从而说明掷硬币决定谁先开球的方法还是比较公平的。
三、及时应用,深化知识:
课件出示:玩飞行棋的游戏。
(一)利用可能性、修改公平方案
出示:小红:用我制作的转盘吧,指针指的颜色与谁的衣服新颜色相同谁先来。
你认为公平吗?转到三个人的可能性分别是多少?
板书:、
怎样设计这个转盘才公平呢?
学生口头叙述修改方案,教师相应的演示。分别说明修改后的可能性是多少。突出可能性相等。
利用大家制作的转盘来开始游戏。
(二)游戏中的数学问题
1、预测
在游戏中提出问题:掷出每个数的可能性是多少呢?
如果投掷60次估计大约会掷出多少次6?说一说你是怎么算的?
小结:这只是理性的思考结论。利用可能性的知识预测某些事件发生的一个概率
2、在单双数中体会用几分之几表示可能性。
出示小军:我发现每次掷出的数,不是单数就是双数,掷出单数或双数的可能性各是多少?
学生思考后回答:或者
说一说分别是什么意思。
在学生回答的基础上利用转盘演示单双数的出现概率,加深学生的理解。
通过演示让学生认识到掷出每个数字的可能性与掷出单数或双数的可能性的联系。
四、巩固练习、拓展提高:
(一)开锁(体会可能性的随着总数的变化为变化)
1、一把钥匙只能开一把锁,有6把钥匙和6把混乱的钥匙,要想把这些锁都打开怎么办?
2、以用所有钥匙开一把锁为例。先开第一把锁,你认为可能是几号钥匙?你猜对的可能性是多少?
3、依次去开后面的锁。每次都追问猜对的可能性是多少?
4、为什么猜中的越老越多?出示所有分数。
小结:看来在某些时候可能性会随着事件的发展不断变化的。
(二)小游戏。(略)
五、课堂小结。
通过今天的学习你最大的收获是什么?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号