日期:2022-02-12
这是梯形面积优秀教学设计,是优秀的数学教案文章,供老师家长们参考学习。
一、教学内容:五年级上册第88页《梯形的面积》
二、教学目标:
1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。
2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。
3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。
三、教学重难点
教学重点:
探索并掌握梯形面积是本节课的重点
教学难点:
理解梯形面积计算公式的推导过程是本课的难点。
四、教学过程:
(一)、复习旧知
出示(点)展开想象引到(线段)又通过想象引到互相垂直的两条线段
同学们看这个图形,你会想到什么?(平面图形的底和高)想象这是什么图形的底和高,用工具在作业纸上将想象图形的另一部分补充完整,并在图下写出你所知图形的面积计算公式及字母表达式。
学生汇报时板书所学图形的图片及面积公式,回忆三角形和平行四边形的面积推导过程,引出转化的数学思想。在学生汇报梯形引出课题,并板书课题。
【设计意图:本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积,渗透了转化的数学思想,即复习了旧知,又引出了新知,而且培养了学生以发展的眼光看数学,逐步建构自己知识体系的能力。】
(二)、探究新知
联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。桌上的学具超市里放有直角梯形、一般梯形等若干个,有完全一样的,也有不一样的。然后分组探究。具体做法:
自选学具。(每个小组发如下梯形图片和探究表各一份)
形状 个数 拼成的形状 结论
……
提出要求:
做一做:利用手中的学具,选择你所需要的梯形,或拼、或剪…转化成一个以前我们所学的图形。
想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?
说一说:你发现了什么,并尝试推导梯形的面积计算公式。
小组合作,操作、观察、交流、填表,教师参与讨论。
【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】
全班交流汇报。(教师根据学生的回答借助课件演示)
a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。
b、沿梯形的对角线剪开分成两个三角形
c、把一个梯形剪成一个平行四边形和一个三角形
d、沿等腰梯形的一个顶点做高,剪拼成一个长方形
e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形
f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。
……
对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。
(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)
归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。
梯形的面积=(上底+下底)×高÷2
如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:
S=(a+b)h÷2
【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】
(五)深化巩固
1、尝试计算
a、计算一个一般梯形的面积。
b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:
(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。
(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?
借助模型和课件让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。
【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。】
2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?
【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及综合整理的能力。】
3、总结,反思体验
回想这节课所学,说说自己有哪些得失?
【设计意图:这个环节主要是再次把学习的主动权交给学生。让学生在回忆过程中更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】
【教后反思】:
五年级下册88页《梯形的面积》是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。本课通过出示学具超市—小组合作探究—展示、交流—引导学生自己总结公式—应用梯形面积的计算公式解决实际问题—构建知识体系完成教学目标。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。由于学生已经经历了平行四边形和三角形的面积计算公式的推导过程,他们完全有能力利用的所学的方法进行梯形的面积计算公式的推导;因此,我大胆地让学生自己完成这一探索过程。对于个别学困生,我则通过参与他们的讨论,引导他们自己去发现问题,解决问题。提供给学生几种不同形状的梯形去探究,目的是让学生经历从特殊到一般的归纳过程。有了操作和讨论作铺垫,公式的推导也就水到渠成了,所以,让他们自己归纳公式。在“操作、观察、分析、讨论、概括、归纳”这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。分析如下:
突出体现了两个亮点:1、尊重学生的个性发展,允许学生在学具超市中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。2、设计了一系列的探究活动、让学生在想、说、拼、议、评、等过程中复习旧知,学习新知。这些都有利于拓宽学生的思维空间,提高学生的动手操作能力和知识迁移能力。在上课时也显示出几点缺陷,1、学生汇报时我没有注意让学生对两个完全一样的梯形拼成了一个平行四边行作重点理解,因而在引导公式时学生理解有难度,我才又在投影下重合两个梯形,让学生体会梯形的上底与下底的和就是平行四边形的底。造成学生失败后再补救的局面。2、公式的推导形式单一,造成这一现象源于学具准备不科学。或教师引导不到位。3、学生用字母代数推导公式时,我不注意先设定图形的那一部分分别用哪个字母表示,而是直接让学生生硬的套用,显示出教师上课的随意性。以上种种说明我的教学理念还很滞后,有待于更新、学习。)
课时目标
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学准备
师:多媒体、完全一样的梯形若干个。
生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
重点难点:自主探究梯形的面积公式。理解并掌握梯形的面积公式,会计算梯形的面积。
教学过程
一、问(目标引领 问题导学)
1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。)
让学生回忆它们的面积的计算方法是怎么推导出来的?
(把它转化成已经学过的图形来研究面积的。)
2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。(板书课题:梯形的面积)
二、猜(读)(联系旧知 自主尝试)
1.出示教材第95页情境图。引导学生观察:车窗玻璃是什么形状的?(梯形)
思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?
小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。
2.让学生利用梯形学具验证自己的猜测。
小组活动,教师深入各小组进行指导。可提醒学生用剪刀剪一剪,再拼一拼。
3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。
三、探(合作探究 点拨辅导)
学生以梯形面积计算的公式推导有多种方法,可能会这样做:
(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2。
出示推导过程:
(2)把一个梯形剪成两个三角形。
梯形的面积=三角形1的面积+三角形2的面积=梯形上底×高÷2+梯形下底×高÷2=(梯形上底+梯形下底)×高÷2
出示推导过程:
(3)把一个梯形剪成一个平行四边形和一个三角形。
梯形的面积=平行四边形面积+三角形面积
=平行四边形的底×高+三角形的底×高÷2
=(平行四边形的底+三角形的底÷2)×高
=(平行四边形的底×2+三角形的底÷2×2)×高÷2
=(平行四边形的底+平行四边形的底+三角形的底)×高÷2
因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底+三角形的底,所以梯形的面积=(上底+下底)×高÷2。
1.小结:大家都是把梯形转化成我们学过的图形,推导出它的面积计算方法,无论哪种方法我们都可以推导出梯形的面积计算公式。
板书:梯形的面积=(上底+下底)×高÷2 用字母表示:S=(a+b)×h÷2
2.教学教材第96页例3。
出示教材第96页例3情境图和横截面的示意图,引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形。)
让学生找一找,直角梯形的高在哪里?你能理解这个横截面的含义吗?
通过交流,学生能明白:直角梯形的高也是它的一个腰长。这个梯形的上底是36米,下底是120米,高是135米。
你能利用所学的知识计算一下这个直角梯形的面积吗?
让学生尝试计算,并交流汇报。
根据学生的汇报,板书计算过程:(见板书设计)
四、用(训练推进 拓展延伸)
1.完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。
学生可以把它看成一个大梯形,梯形的上底是(40+45) cm,下底是(71+65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,,算出两个梯形的面积再加起来。
2.完成教材第97页“练习二十一”第3题。
本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。
3.完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm+48mm,高250mm的平行四边形,求出它的面积。
板书设计:梯形的面积
梯形的面积=(上底+下底)×高÷2
用字母表示:S=(a+b)×h÷2
例3:S=(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530 (m2)
教学反思:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
定积分是高等数学中最重要的两个基本概念之一。定积分的概念的产生与发展经历的很长时间,这也造成了概念本身的复杂性。现有一般的教材中定积分的概念基本上都是由求曲边梯形面积这一引例抽象出来的。但是,在教学中,学生对求曲边梯形面积主要有两点疑问:
(1)为什么求面积要使用“分割、取近似、求和、取极限”的这样一个非常复杂的方法,感到方法很陌生,很难以理解。
(2)经过上述步骤得到的是一个异常复杂的极限,教材中就把这个极限值“看成”或“理解成”或“定义为”所要求的曲边梯形的面积。实际上,通过对学生的调查询问,大多数同学并不完全认可这个结果,从而有可能导致对定积分整块内容的不认可。
上面的问题在现有的教材中均未给出很清楚的解释。本文试图从一个简单的具体例子出发,先让同学们认可这一结果,然后再进行推广。
1.曲边梯形简介
首先介绍一下什么叫做曲边梯形。
定义 曲线梯形是由连续曲线y=f(x),直线x=a,x=b及y轴所围成的图形,如图1所示。
我们的目标就是要求这个封闭图形的面积(注意是精确值)。这种不规则的图形的面积显然不能用初等公式得到结果。下面我们从一个简单例子开始。
2.一个简单例子
实例 求曲线y=x2、直线x=1及y轴所围成的图形的面积。
显然,本例的图形可看成为曲边梯形的一个特例。我们仍可采用“分割、取近似、求和、取极限”这样的步骤进行计算,将其中具体的细节(如分割的方法、取近似的值)具体化,经计算得到图形的面积,最后再加以推广。下面介绍这个特殊图形的具体方法。
3.第一种方法
先按上述四个步骤进行第一次计算。
(1)分割:在闭区间[0,1]内插入n-1个分点,等份,则长度为1的区间被分成了n份,每个小区间的长度为■;过区间中间的n-1个分点做垂线将图形进行分割,这样就得到了n个小图形,如图2所示。
(2)取近似:取每个小区间左端点的函数值为矩形的高,以每个小区间长度(都为■)为矩形的底构造n个(实际上是n-1个)矩形,用它们来近似相应的窄曲边梯形的面积(如图2所示)。
(3)求和:将上步的n-1个矩形的面积相加,
(■)2・■+(■)2・■+…+(■)2・■
=■
其和作为整个曲边梯形的面积的近似值。
(4)取极限:令各小区间长度■0,即n∞,计算上式的极限■■=■。
通过上述过程可见,经过此方法得到的式子的极限是存在的。那么自然而然的问题是:此极限值就是所求图形面积,还是比所求面积略大?
4.第二种方法
为了回答所提出的问题,下面我们将计算方法稍作改动,具体如下:
第二步将取左端点的函数值改为右端点,则得到的是n个矩形(如图3所示),其面积之和为
(■)2・■+(■)2・■+…+(■)2・■+(■)2・■
=■,
令n∞,即每小区间长度趋于零时,得极限值为
■■=■。
通过上面的两次计算,所提出的问题也有了答案,即我们要求的面积确为1/3。从而,我们得到了一个常识:在取极限时,当令每个小区间长度都趋于零时,得到的极限值即为所求面积,即按照这种方式取极限可以消除误差。
5.方法的推广
下面将上述两种计算方法进行推广,有如下两方面:
(1)取近似这一步取左端点还是右端点得到的结果是一样的,所以显然取小区间中任何一点得到的结果也应该是相同的。
(2)由上面得到的常识可知,区间的分割方法也不必要等份,我们可以采取其它的分法,只要能够取极限时使得每个小区间长度趋于零就可以了。
下面写出关于此例推广后的计算方法:
(1)分割:在闭区间[0,1]内任意插入n-1个分点0
(2)取近似:在每个小区间[xi-1,xi]上任取一点ξ1,将以f(ξ1)为高,xi为宽的矩形面积近似看作第i个小曲边梯形的面积为值为Si(i=1,2,…,n),即Si≈f(ξ1)・xi。
(3)求和:将上步的n-1个矩形的面积相加,
S=■Si≈■f(ξ1)・xi;
其中S为所求面积。
(4)取极限:记λ=max{x1,x2,…,xn},令λ0时,得到极限如下
■f(ξ1)・xi=■。
本文所讨论的简单实例的最终计算方法如上所述,结果为■。
6.一般曲边梯形面积的求法
有了关于上面的具体例子的计算方法,我们很容易就可以把这种方法及其符号推广到更一般的曲边梯形上,就得到了一般教材上给出的面积的求法,具体如下:
(1)分割:在闭区间[a,b]内任意插入n-1个分点a
(2)取近似:在每个小区间[xi-1,xi]上任取一点ξ1,将以f(ξ1)为高,xi为宽的矩形面积(如图4所示)近似看作第i个小曲边梯形的面积为值为Si(i=1,2,…,n),即Si≈f(ξ1)・xi。
(3)求和:将上步的n-1个矩形的面积相加,
S=■Si≈■f(ξ1)・xi;
其中S为所求面积。
(4)取极限:记λ=max{x1,x2,…,xn},令λ0时,可得到所求面积 为如下极限:
S=■■f(ξ1)・xi 。
7.结语
本文给出了学生在学习求曲边梯形面积时存在的两点疑问,经过多年教学探索,提出了一种新的、较细致的求面积的方法。先从一个简单的具体例子入手,然后将求解方法加以推广,最后应用到一般的曲边梯形上。上述方法可以很清楚的解释提出的两点疑问,并且能够使学生对此部分内容的理解更加透彻,对后面定积分的引入及应用起到了非常重要的作用。
注:理解定积分定义要注意以下三点:
1)定积分定义与我们前面讲的函数极限的“”定义形式上非常相似,但是两者之间还是有很大差别的。对于定积分来说,给定了细度以后,积分和并不唯一确定,同一细度分割由无穷多种,即使分割确定,介点仍可以任意选取,所以积分和的极限比前面讲的函数极限要复杂的多。
2)定积分是积分和的极限,积分值与积分变量的符号无关
3) 表示分割越来越细的过程, 分点个数,但反过来 并不能保证 , 所以 不能写成
小结:本节课学习了定积分概念.
课堂练习:第43页练习A、B
课后作业:第48页A:1,2,
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号