当前位置:首页 > 教案教学设计 > 数学教案

比例尺教学点评

日期:2022-02-12

这是比例尺教学点评,是优秀的数学教案文章,供老师家长们参考学习。

比例尺教学点评

比例尺教学点评第 1 篇

  教学目标:

  1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。

  2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

  教学重点:

  认识比例尺的意义。

  教学难点:

  求一幅平面图的比例尺。

  板书设计:

  比例尺

  (1)9.5厘米:95米=9.5:9500=1:1000

  6厘米:60米=6:6000=1:1000

  (2)19厘米:95米=19:9500=1:500

  12厘米:60米=12:6000=1:500

  图上距离 :实际距离=比例尺

  教学过程:

  (包括导引新课、依标导学、异步训练、作业设计等)

  一、生活原型再现

  师:(出示孙楠同学的照片)你们认识他吗?他是谁?

  生:孙楠。

  师:怎么可能呢?照片上的人这么小,怎么会是他呢?

  生:是缩小了……

  师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?

  生:不像他了,像丑八怪……

  师:那怎样才能像他呢?

  生:都要缩小。

  师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?

  生:不像,要缩小相同的倍数。……

  二、创设情境,以疑激思

  同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。

  出示:足球场:长 95米,宽60米。 学生作图。

  三、 独立探究,合作交流。

  1、通过学生讨论,引出学习要求。

  (1)确定图上的长和宽的长度;

  (2)画出足球场的平面图;

  (3)写上图上的长和宽的长度;

  (4)分别写出图上长、宽与实际长、宽的比,并化简。

  根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。

  2、学生小组学习。

  3、学生汇报设计思路。

  生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的'长方形图就是足球场的平面图。……

  (根据学生的汇报板书)

  图上距离:实际距离

  (1) 9.5厘米:95米=9.5:9500=1:1000

  6厘米:60米=6:6000=1:1000

  (2) 19厘米:95米=19:9500=1:500

  12厘米:60米=12:6000=1:500

  4、揭示比例尺的意义。

  图上距离和实际距离的比,叫做这幅图的比例尺。

  图上距离 :实际距离=比例尺

  师:1:500的比例尺,说说你是怎样理解的?

  生:表示图上距离是实际距离的1/500;

  表示实际距离是图上距离的500倍;

  图上距离和实际距离的比是1:500;

  图上1厘米表示实际距离5米,

  介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。

  四、加深理解,拓展应用。

  (1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?

  (2)辨析:比例尺是一把尺吗?

  (3)比例尺一般出现在什么地方?(地图上或平面图上)

  (4)出示山东省主要城市位置图。

  师:在这张地图上,你去过什么地方?

  师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?

  生:比例尺。出示比例尺 1∶8000000

  生:图上距离。

  师:给你一把尺子能解决这个问题吗?

  学生尝试解决。

  交流:

  生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。

  生2:根据实际距离是图上距离的8000000倍,可以用

  5.5×8000000=44000000厘米=440千米

  生3:根据图上距离是实际距离的1/8000000,也可以用

  5.5÷1/8000000=5.5×8000000=44000000厘米=440米

  生4:老师,也可以用方程来解。

  解:设烟台到泰安的距离是x厘米。

  1:8000000=5.5:x

  x=44000000

  44000000厘米=440千米

  师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?

  生:4.4小时

  师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?

  一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”

  忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……

  五、反思体验 拓展完善

  1、学生谈自己的收获,总结本节课的内容。

  2、你还想知道什么?

  六、作业设计

  自主练习:2、3

  教学后记:

  (包括达标情况、教学得失、改进措施等)

  上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

  (1)在学生已有的经验上学习数学

  新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。

  (2)让学生经历了知识的形成过程

  只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

  (3)让学生密切联系了生活实际

  数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

比例尺教学点评第 2 篇

  在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离。而且在教学的过程中,方法也有不同,学生很容易混淆。

  第一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。

  第二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。

  根据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。例如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。

  对于第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。

  在学生出现问题之后,针对学生的情况,及时地给学生适当的进行归纳整理,会加强学的理解,帮助学生更好的掌握!

比例尺教学点评第 3 篇

教学目标

(一)知识教学点

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

(二)能力训练点①培养学生发现问题、分析问题、解决问题能力;②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③辩证唯物主义的初步渗透

教学重点 比例尺的应用。

教学难点 比例尺的实际意义。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

[评析:“照样子画黑板”是同学们美术课上再熟悉不过的举动,但以此为本节课的开始,让学生在不知不觉中体会到了比例尺,实为教者的匠心之笔!]

5、挑两个黑板图(一个画得不像一个画得较像)出示:

a) 评价:①谁画得更像一点?

②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

b) 师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:350÷7=50 图上长5厘米,长缩小:350÷5=70

宽1.5厘米,宽缩小:150÷1.5=100 宽2.5厘米,宽缩小:150÷2.5=60

c) 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

[评析:实践出真知!让学生分析画得“像与不像”使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。]

(二)再画再比

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:350÷3.5=100 宽1.5厘米缩小:150÷1.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

[评析:从画黑板——提出问题到“比比谁画得像”——分析问题再到“如何画得更像”——解决问题。教者均是置学生于熟悉的生活背景下,感受并理解比例尺意义,体现了数学的生活性。]

二、结合实际,理解比例尺

(一)说一说

①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

③图A、图B长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

(二)算一算

①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

[评析:比例尺是一个实用性很强的知识点,教师在帮助学生理解比例尺意义时,运用实例让学生“说一说”、“算一算”,口脑并用,从多角度多方位理解比例尺的实际含义,为下面多种角度计算实际距离、图上距离打下知识准备。]

三、联系实际,应用比例尺

(一)求图上距离

1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

①独立思考,试试看,如感觉有困难小组内小声讨论。

②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

方法一:400米=40000厘米 方法二:400米=40000厘米

40000÷10000=4(厘米) 40000×1/10000=4(厘米)

方法三:10000厘米=100米 方法四:用比例解(略)等等

400 ÷100=4(厘米)

小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

[评析:“怎样计算图距和实距?”教者一改以往根据比例尺计算方法去死套公式(图距=实距×比例尺;实距=图距÷比例尺)的做法,也一改教材中“烦琐”的比例解法,而是借助于学生对比例尺的多角度理解,不把知识点“讲死”,让学生灵活的选择解决方法,很好的体现了新课标的理念——以人为本,即让不同的学生学不同的数学,让不同的学生得到不同的发展。]

2、练一练:

区委东北是我区闹市区——十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)

3、画一画:

①请准确地画出教室前黑板的平面图。(怎样画才算准确?)

②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。

(二)求实际距离

1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?

①独立思考;②合作交流;③讲评算理。(略)

2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?

[评析:用学生熟悉的生活场景——大厂区各地名,采取学生感兴趣的活动——画“地图”联系实际应用比例尺意义计算图距和实距,使学生对数学倍感亲切,感觉数学就在我们身边,突出的体现了数学的生活性。]

(三)新课延伸

1、 南京距大厂40千米,画在这幅图上要画多少厘米?

①独立列式计算(400厘米)。

②要画400厘米,你有何感觉?(太长画不下)

③画不下怎么办?(调整比例尺)

④说说你的调整方案?

[评析:一石激起千层浪!在矛盾冲突中培养学生发现问题、分析问题、解决问题的能力,同时达到使学生跳出大厂看“比例”的目的。]

2、请拿出标有南京上海的地图,找出比例尺并说说意义。

①同座位间合作算出实际距离。

②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?

2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。

[评析:很有创意!采访老师,就地取材增加课的参与度;学生下位采访,体现课的开放性,培养学生解决实际问题能力的同时培养学生的交际能力。使课堂教学内容得到了再延伸!]

四、课堂总结,回顾比例尺(略)

[总评:本节课循着一根知识主线——比例尺的意义与应用,引入新知别出心裁,探究新知有章有法,练习设计富有创意;同时循着一根能力主线——培养学生解决实际问题能力,无论是哪个环节的例子都来源于学生熟悉的生活,重视学生的独立探究与合作讨论相结合。同时多次运用多媒体辅助教学,充分体现了以教师为主导,学生为主体,训练为主线的严禁课堂教学结构,使学生学的轻松,学有成效。]

比例尺教学点评第 4 篇

  [教学案例]

  教学内容:省编义务教材小学数学第十二册《比例尺》

  教学目标:

  1.在实践活动中体验生活中需要的比例尺。

  2.在操作、观察、反思、归纳等学习活动中理解比例尺的意义,了解比例尺在实际生活中的各种用途。

  3.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

  4整体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学过程:

  一、联系生活,引入课题

  1.拍照。

  (1)师:同学们都拍过了照片,比较一下,照片中的你与实际的你什么变了,什么没变?)

  (2)想一想:这么大的一个人怎么会印到一张这么小的照片上的呢?

  2.的确,生活中有时要把实际的大小缩小若干倍或扩大若干倍以后再画到纸上。你还能举出这样的例子吗?

  3.这是几天前,我在售房中心看房时,一位售楼先生给我推荐了两套住房,可是他只给看了一下图纸,我买房的标准是想要面积大一些,我想请同学们帮帮我这个忙,好吗?

  师:看来同学们的意见不统一了,目前还不能帮老师确定到底购买那一套住房,那么,住房平面图与实际的房屋之间有什么关系呢?这就是我们今天要学习的内容。(板书:比例尺)

  二、自主探究,理解意义

  1.小小设计师规划操场

  (1)师:以前我们在学习测量时同学们已经动手测量出我们教室地面长8米,宽6米。好,同学们,现在老师就请你们当一回小小设计师,将教室占地的平面图画在老师发给的白纸上。”有信心当好这个设计师吗?

  (2)师:好!一起来读一下学习要求。

  2.要求:

  确定图上的长和宽;

  个人独立作出平面图;

  写出图上的长、宽与实际的长、宽的比,并化简。

  图上距离实际距离图上距离与实际距离的比

  长

  宽

  完成后4人小组交流(重点交流你是怎么确定图上的长和宽的)。

  3、学生小组合作学习。

  4、汇报。(投影展示)

  师:咱们先请这几位小设计师说说自己是怎样设计的。

  (学生汇报设计思路)

  师:请这幅图的设计师说一说你是怎们确定图上的长和宽的?

  图上的长和实际长的比是多少?

  图上的宽和实际宽的比是多少?

  ……

  (根据学生的汇报板书)

  图上距离:实际距离

  (1)8厘米:8米=8:800=1:100

  6厘米:6米=6:600=1:100

  ……

  **师:有没有化简后的比是不一样的?

  **师:你能说一说你是怎么设计的吗?

  (我知道自己的画法错了,我是随便画了一个长方形,这不是教室的平面图。)

  5、揭示比例尺的意义。

  师:看了你们的杰作,老师知道大家非常聪明!(指着图上距离)这些都是在图上的长度,我们把它叫图上距离。(指着实际距离)这些都是实际的长度,我们把它叫实际距离。这两个距离是以什么形式出现的?

  (比的形式,图上距离作为比的前项,实际距离作为比的后项)

  师:那么最后算得的就是什么?

  师:我们赋予它一个新的名称,就叫做——比例尺。

  提问:比例尺是尺吗?那它是什么?是谁与谁的比

  师:现在你知道比例尺是谁与谁的比?怎么求呢?

  板书:图上距离:实际距离=比例尺还可以写成分数的形式。

  师:比例尺1:300是什么意思?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号