日期:2022-02-07
这是比例的应用板书设计,是优秀的数学教案文章,供老师家长们参考学习。
比例的应用板书设计第 1 篇
教学目标
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
140÷2×5
=70×5
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长 千米.
=
2 =140×5
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
70×5÷4
=350÷4
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?
4 =70×5
=87.5
答:每小时需要行驶87.5千米.
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业.
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.
比例的应用板书设计第 2 篇设计说明
1、注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2、培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
教师准备多媒体课件
教学过程
⊙创设情境,提出问题
1、介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2、呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1、想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2、说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一14÷4=3。5,3。5×10=35(本)。
方法二10÷2=5,14÷2=7,5×7=35(本)。
方法三4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1、提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2、学生尝试列式。
预设
方法一4∶10=14∶x。
方法二10∶4=x∶14。
方法三14∶4=x∶10。
方法四4∶14=10∶x。
3、交流汇报写出比例的主要依据。
4、学生独立解比例。
5、汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6、出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7、验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8、教师小结。
解比例的关键是根据“内项的积等于外项的'积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
比例的应用板书设计第 3 篇教学目标
《比例的应用》的教案设计
1.使学生能正确判断应用题中涉及的量成什么比例关系.
2.使学生能利用正、反比例的意义正确解答应用题.
3.培养学生的判断推理能力和分析能力.
教学重点
使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.
教学难点
利用正反比例的意义正确列出等式.
教学过程
一、复习准备.(课件演示:比例的应用)
(一)判断下面每题中的两种量成什么比例关系?
1.速度一定,路程和时间.
2.路程一定,速度和时间.
3.单价一定,总价和数量.
4.每小时耕地的公顷数一定,耕地的总公顷数和时间.
5.全校学生做操,每行站的人数和站的行数.
(二)引入新课
我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.
教师板书:比例的应用
二、新授教学.
(一)教学例1(课件演示:比例的应用)
例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?
1.学生利用以前的方法独立解答.
14025
=705
=350(千米)
2.利用比例的知识解答.
(1)思考:这道题中涉及哪三种量?
哪种量是一定的?你是怎样知道的?
行驶的路程和时间成什么比例关系?
教师板书:速度一定,路程和时间成正比例
教师追问:两次行驶的路程和时间的什么相等?
怎么列出等式?
解:设甲乙两地间的公路长
千米.
=
2
=1405
=350
答:两地之间的公路长350千米.
3.怎样检验这道题做得是否正确?
您现在正在阅读的《比例的应用》教学设计文章内容由收集!本站将为您提供更多的.精品教学资源!《比例的应用》教学设计4.变式练习
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(二)教学例2(课件演示:比例的应用)
例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果要4小时到达,每小时要行多少千米?
1.学生利用以前的方法独立解答.
7054
=3504
=87.5(千米)
2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
这道题里的路程是一定的,_________和_________成_________比例.
所以两次行驶的_________和_________的_________是相等的.
3.如果设每小时需要行驶
千米,根据反比例的意义,谁能列出方程?
4
=705
=87.5
答:每小时需要行驶87.5千米.
4.变式练习
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达.如果每小时行87.5千米,需要几小时到达?
三、课堂小结.
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、课堂练习.(课件演示:比例的应用)
(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
(二)同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?
2.王师傅4小时生产了200个零件,照这样计算,_______?
五、课后作业.
1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
您现在正在阅读的《比例的应用》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《比例的应用》教学设计3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?
六、板书设计.
教案点评:
本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。
在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。
探究活动
鱼池有多少条鱼?
活动目的
1.培养学生应用所学知识解决实际问题的能力.
2.培养学生的判断推理能力和分析能力.
活动形式
以小组为单位讨论.
比例的应用板书设计第 4 篇教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生能用比例方法正确解答比例应用题。
3、培养学生的推理判断能力及勇于探索的精神。
教学重难点:
正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。
教学过程:
一、 创设情境,导入新课:
同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)
1、判断下面每题中的两种量成什么比例关系?
(1)单价一定,总价和数量、
(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、
(3)全校学生做操,每行站的人数和站的行数、
2、 说说速度、时间和路程这三个量存在怎样的比例关系?
(当速度一定)
二、探究新知:
1、 导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。
板书课题:比例的应用
2、学习例1.(课件出示例题 )
例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?
(1) 先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。
(2)引导学生探究用比例知识解答。
提问:这道题能不能用比例知识来解答呢?
(课件出示问题,让学生思考)
1、这道题中涉及哪三种量?(路程、时间和速度)
2、哪种量是一定的?你是怎样知道的?(照这样的`速度就是说速度一定)
3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)
(课件出示思考的过程,并齐读)
(3) 提问: 根据正比例的意义可以列出怎样的比例?
(教师根据学生的回答板书)
(4) 解这个比例。 (教师板书解答过程)
(5) 怎样检验所求的答案是否正确?(把求出的未知数代入原方程 ,看等式是否相等)
(6)写出答语。
(7) 练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。
(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。
3、学习例2:
(课件出示例题)
(1)自主探究用比例知识解答
1 合作交流,小组讨论:
题中有哪几种量? 这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?
2、汇报讨论结果。
老师板书方程并提问: 这个方程是比例吗?为什么?
3、师生一起解答。(完成例2的板书)
4、练习:(课件出示练习题)
一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果每小时行驶87.5千米,需要多少小时到达?
(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)
4、 比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。但它们都是方程。) 你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?
5、教师小结。
(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)
三、知识应用:(出示课件做一做)
1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?
2、某种型号的钢滚球,3个重22.5克。现有一些这种型号的滚球,共重945克,一共有多少个?
四、作业:练习中的1~4题。
五、课堂小结:
1、这节课我们学会了什么?
(学会了用比例知识解答应用题)
2、结束语:比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。我们以后再去探讨好不好?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号