当前位置:首页 > 教案教学设计 > 数学教案

比和比例公开课

日期:2022-01-20

这是比和比例公开课,是优秀的数学教案文章,供老师家长们参考学习。

比和比例公开课

比和比例公开课第 1 篇

课前准备:

  教师准备:PPT课件

  教学过程:

  ⊙谈话揭题

  1.谈话。

  师:我们学过了关于比的哪些知识?(结合学生回答,板书知识网络)

  预设

  生1:比的意义。

  生2:比和分数、除法的关系。

  生3:比的基本性质。

  生4:求比值和化简比。

  生5:比例尺。

  生6:按比分配。

  2.揭题。

  同学们说得很全面,这节课我们就来复习有关比的知识。[板书课题:比和比例(一)]

  ⊙回顾与整理

  1.比的意义。

  (1)什么叫比?比的各部分名称是怎样规定的?

  ①两个数相除又叫做两个数的比。

  ②“∶”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  (2)比和分数、除法有怎样的关系?

  预设

  生1:同除法比较,比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。

  生2:比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  生3:根据分数与比的关系可知,比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。

  2.比的基本性质。

  比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  3.求比值和化简比。

  (1)求比值的方法。

  用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。

  (2)化简比的方法。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前项和后项是互质数。

  (3)求比值与化简比的不同点。

  学生讨论后汇报:

  预设

  生1:方法不同,求比值是根据比值的意义,用比的前项除以比的后项;化简比是根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外)。

  生2:求比值的结果是一个数;化简比的结果是一个最简比。

  4.按比分配。

  (1)按比分配的意义。

  把一个数量按照一定的比分成几部分,叫做按比分配。

  (2)按比分配的方法。

  首先求出各部分数量占总量的几分之几,然后分别求出总量的几分之几是多少。

  ⊙典型例题解析

  1.课件出示例1。

  求下面各比的比值。

  (1)24∶36(2)0.25∶(3)2吨∶450千克

  解析本题考查的是学生求比值的能力。用比的前项除以后项可求出各比的比值,求比值时应注意比的前项与后项的单位要统一,且比值可以是整数、小数或分数,但不能是一个比。

  解答(1)24∶36=24÷36=

  (2)0.25∶=÷=

  (3)2吨∶450千克=20xx千克∶450千克=20xx÷450=4

比和比例公开课第 2 篇

【教学目标】

  1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。

  2.能够运用比的基本性质把比化成最简单的整数比。

  3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。

  【教学重、难点】

  理解比的基本性质,并运用比的基本性质把比化成最简单的整数比。

  【教学过程】

  一、复习准备

  1.求比值。

  8∶4=48∶12=16∶8=

  24∶18=40∶16=15∶5=

  .准备题。

  (1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)

  学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?

  (2)在()内填上适当的数。

  3÷4 =( )4=( )40= ( )÷12 =0.75

  58=5:( )

  6:7 =( )7=( )7

  9:( )=( ):16

  教师:由上面这两组题你想到了什么?

  小结: 根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。

  比也可以写成分数的形式,如5:8可以写成5/8。

  二、学习新知

  1.出示例2:观察下面的比是怎样变化的。

  200/240=20/24=10/12=5/6

  ↓ ↓↓↓

  200∶240=20∶24=10∶12=5∶6

  独立观察,思考:比的前项、后项发生了什么变化?

  分组讨论:看看上面的这个例子,想一想:在比中有什么样的规律?

  学生进行小组总结后,小组间交流汇报。 通过交流总结出比的基本性质。

  2.概括比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  3.应用比的基本性质化简比。

  (1)让学生在例2中找出你认为最简单的整数比,明确什么是最简整数比。

  (2)出示例3:化简下面各比。

  ①15∶12②14∶56

  ③30∶60∶120

  师生共同观察,找出各组比的特征,然后进行分析 、化简。

  第①题:这个比的前项和后项都是整数,如何化简?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止)

  第②题:这个比的前项和后项都是什么数,怎样才能把它们转化成整数比?(学生观察分析后,独立探索化简的方法,再交流优化的化简方法)

  学生交流完后,教师进一步作小结:比的前项和后项都是分数的,一般把比的前项和后项同乘两个分数分母的最小公倍数,把它们转化成两个整数比,再进一步化简。

  第③题:这个比有什么特点?(三个数的连比)又如何化简呢?化简两个整数比的方法对于化简三个整数连比是否适用呢?

  学生讨论后尝试化简,填在书上。

  教师提示:在三个数的连比中,比号不表示除号。

  三、巩固练习

  1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。

  学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。

  2.出示练习题:化简下面各比,并求出比值。

  比最简单的整数比比值

  9:54

  34∶67

  5.8∶2.9

  200∶150∶26

  讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)

  3.学生独立完成练习十五第3题,完成后用投影仪集体订正。

  4.拓展练习。

  (1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )。

  (2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

  四、课堂小结

  通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?

比和比例公开课第 3 篇

教学内容:《比和比例》教案

  教材第84页例4,练习十七第2、4----7题。

  教学目标 :

  1、理解正、反比例的意义。能正确判断两种量是否成正比例或反比例。能熟练地运用比例来解决有关问题。

  2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力

  3、培养学生用发展变化的观点来分析问题的`能力,渗透函数思想。

  教学重点:

  掌握正、反比例的意义。

  教学难点:

  正确判断两种量成什么比例。

  教具准备:

  多媒体课件。

  教学过程:

  一、明确学习任务

  出示课题

  二、正、反比例的意义

  1、例4:你是怎样判断两种量成正比例还是成反比例的?

  正比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;

  ③两种量的比值一定。

  反比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;

  ③两种量的积一定。

  2、你能用字母表示正、反比例的关系吗? =k(一定) 成正比例

  y =k(一定) 成反比例

  三、判断两种量是否成正比例或反比例。成什么比例?

  ①速度一定,路程和时间。

  ②正方形的边长和它的面积。

  ③订《少年报》数量和所需钱数。

  ④小明从家到学校,行走的速度和时间。

  ⑤圆的周长和半径。

  ⑥圆的面积和半径。

  四、用比例解决问题。

  1、说一说用比例解决问题的步骤。

  2、举例:修一条公路,全长12km,开工3天修了1.5km。照这样计算,修 完这条公路一共需要多少天?

  A.两种相关联的量是什么?

  B.两种量成什么比例?说明理由,写出等量关系式

  C.设未知数X,列出比例式

  D.解比例并检验

  五、知识应用

  独立完成练习十七第2、4----7题。

  六、课堂总结

  回顾本节课的学习,说一说你有哪些收获?

  板书设计:

  比和比例(二)

  A.认真审题,找出两种相关联的量;

  B.判断两种量成时难免比例;用比例解决问题的过程、步骤

  C.设未知数X;

  D.列出比例式(含有未知数);

  E.解比例、检验。

  教学反思:

  在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。

比和比例公开课第 4 篇

教学目标:

  1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

  2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

  3、知识目标:(1)使同学进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以和根据比例尺求图上距离和实际距离。

  教学重点:理解比和比例的意义、性质,掌握关于比和比例的一些实际运用和计算。

  教学难点:能理清知识间的`联系,建构起知识网络。

  设计思路:

  担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。

  课前准备:

  1、把同学分成四大组,让同学给自身组取名(如精灵队、快乐队等),把比和比例分成"比和比例的意义"、"比和比例的性质"、"求比例和化简比"、"比例尺"四大块,让每一组抽签确定本组的一个研究主题,然后分组研究本局部的知识包括哪些我们需要掌握的内容,有哪些重点和难点,最后拟定五个问题。要求这五个问题反映本组全体同学的水平,它们要能基本概括你们所研究主题的全部内容以和重点难点,而且为了本组能取得好成果,提出的问题要有价值,要有一定的考虑性。然后依次向其它小组提问,请他们作答。

  2、教师准备地图一张、投影片、小黑板若干。

  3、每一小组有一信封,信封内装有比和比例各局部知识名称和一张白纸。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号