日期:2022-02-13
这是比例的意义优质课一等奖,是优秀的数学教案文章,供老师家长们参考学习。
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的'学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺;
5、板书中的字体不太规范,要加强基本功的训练;
针对听课老师和学生的评价,在以后的教学中,我会发扬优点、克服不足,不断提高自己的教学水平。
【学习内容】:人教版义务教育课程标准实验教科书数学六年级下册第40页的内容。
【学习目标】:
1、结合具体情境,通过计算,能说出比例的意义,能应用比例的意义判断两个比能否构成比例。
2、通过观察、比较、小组讨论说出比和比例的区别。
3、探索国旗中蕴含的数学知识,渗透爱国主义教育。
【学习重点】:比例的意义,应用比例的意义判断两个比是否能构成比例。【学习难点】:应用比例的意义判断两个比是否能构成比例。
【学习过程】
一、创设情境,目标认同
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?现在我们来校对课前你们做的题,校对好提问:观察这些比值你有什么发现?(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)
二、自主探究,构建新知
出示情景图,说一说各幅图的情景。
师:三幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、多媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?这中间是不是隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
(1)师:请同学们先看学校操场上和教室里的国旗长与宽的数值,写出比,并求出比值
(2)比较的比值。
2.4:1.6=3/2 60:40=3/2
师:比较一下,你什么发现?
师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)
师:同学们现在用了等号表示出这样一个式子,(板书:式子)谁来说一说这个式子就表示了什么?
生:表示相等的两个比。
生:表示两个比值相等的比(师板书:比相等)
师:像这样表示两个比相等的式子叫做比例。板书同桌互相说说
这个就是今天我们学习的——比例的意义(板书:比例的意义)
三、合作探究,进一步理解比例。
1、探索组成比例的条件
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)
2、寻找比例师:你还能从三面国旗中找出哪些比例?看哪一组写的比例多(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶10 60∶40=5∶10/3等)
师:同学们,你们有没有观察到,在写这么比例的时候,它是不是有一定的规律可循?这个规律是什么?
(预设)
生:长与长的比能够组成比例。宽与宽的比也能够组成比例。
师:观察得真仔细。是啊,我们在写比例的时候,只有找到对应量,才能写成比例。
四、练习巩固,综合应用
师:刚刚我们理解了新的式子——比例,那要是让你来判断两个比是不是能组成比例,你会怎么办?
生:看比值是不是相等
1、完成“做一做”①。
下面哪组中的两个比能够组成比例?把组成的比例写出来
(1)6:10和9:15 (2)20:5和1:4
(3)21和31和6:4(4)0.6:0.2和43:41
学生独立完成,教师巡视,做完校对。
2、完成做一做②
用图中的4个数据能够组成多少个比例?生独立完成。
师:结合图我们想想,这几组比例跟三角形的形状有什么关系?
生:……
师:当两个三角形“按比例”缩小或放大是,它们的形状不变。
3.开放练习
师:现在提升难度,老师给出一个比10:5,看看谁能在1分钟内写的比例最多。
教师出示:10:5=():()
师:还能够写更多的式子吗?你有什么好诀窍?
生:质押分子和分母乘相同的数就能够了
师:我们在最简比的基础上将比的前项和后项同时扩大相同倍数,能够写出无数个比例。
4.游戏
师:看来同学们已经掌握了比例的知识,我们来玩个游戏,轻松一下。
教师发卡片学生,请拿到卡片的学生上台做游戏,其余的学生当裁判。
1:5=5:1 40:5=4×2 8:2 32:8 1:3=2:6 2:1=9:4.5
口令:请是比例的站在左边,剩下的是比的站到右边。
(教师组织学生分析剩下既不是比又不是比例的。)
5、区分比和比例
师:我们的游戏让我们发现了比和比例时有区别的,那区别在哪呢?请在乐学单中完成这个表格。(小组交流,并把交流填在表格里)从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
根据学生回答,教师课件出示。
五、全课总结,联系生活
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
生回顾今天学的知识要点。
师:其实比例在我们的生活中无处不在,我们来看看。
教学目标:
1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
教学过程:
一、创设情境,设疑激趣
同学们,国旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?你对国旗的大小有哪些了解?
学生思考回答(挖掘学生生活经验)
同学们知道的真多,说明同学们平时认真观察,是个有心人。
二、引导探究,自主建构
活动一:探究比例的意义
1.你了解到哪些关于国旗大小的知识?
学生交流,给学生充分的交流机会。
2.你们仔细观察,结合我们上节课学的比的相关知识,估计一下每种规格国旗长和宽或者宽和长之间是否存在什么规律?
(1)猜测
预设:生1、长和宽的比值相等;生2、宽和长的比值相等,
(2)小组验证
每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。
(3)展示交流小组验证结果,学生到黑板前板书得出结论。
预设:每种国旗的长和宽的比都是3:2,他们的比值相等。
每种国旗的宽和长的比是2:3,他们的比值相等。
教师小结:240:160与144:96的比值相等我们可以把比值相等的式子写成 240:160=144:96 或 240/160=144/96
我们把表示两个比相等的式子叫做比例,组成比例的四个数叫做比例的项,两端的两项叫做比例的(外项),中间的两项叫做比例的(内项)。括号中的可以让学生说一说。
你能说出一个比例吗?说一说你是怎么理解比例的?
怎么判断两个比是不是成比例?
试一试,判断下面哪组中的两个比可以组成比例。
2:3和6:9 4:2和28:40 5:2和10:4 20:5和1:4
活动二:探究比例的基本性质
1.利用学生列举的比例和判断题中的比例,大胆猜想一下,每个比例两个内项和两个外项之间会存在什么关系?
2.小组内验证猜测结果
3.展示验证猜测情况。得出结论,
预设:
“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。
“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。
教师归纳总结。
同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
板书:比例的基本性质。
谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)
三、强化训练、应用拓展
同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?
1.判断下面哪组中的两个比可以组成比例?
(1) 6:9和 9:12
(2)1/2:1/5和5/8:1/4
(3)1.4:2 和 7:10
(4) 0.5:0 .2和10:4
2.判断。
(1)表示两个比相等的式子叫做比例 ( )
(2)0.6:1.6与3:4能组成比例 ( )
(3)如果4a=5b,那么a:b=4:5( )
3.填空
5:2=80:( )
2:7=( ):5
1.2:2.5=( ):4
在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是( )。
在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是( )。
4.写出比值是5的两个比,并组成比例
5.根据3a=5b把能组成的比例写出来。
四、自主反思、深入体验
通过这节课的学习你有什么收获?
比例的意义和性质是在学生对比的意义、性质和比值的意义以及求比值的方法有了较充分认识的基础上进一步学习的。掌握这部知识将为进一步学习正、反比例的意义,用比例的方法解应用题奠定了坚实的基础。
教材例题3借助两张不同尺寸的照片的长与宽,来组织学生先思考放大前照片的长和宽的比,接着写出放大后的照片的长和宽的笔,然后探究这两个比有什么关系,最后揭示比例的概念。这一环节处理结束后,教材又提供了这样一个问题的探讨:分别写出照片放大后和放大前长的比和宽的比,这两个比能组成比例吗?
我在教学例3时我对课本的教学步骤做了一些改动:第一步:复习图形的放大和缩小,指出图中的两个比是相等的,引出比例的定义。第二步:学生学习课本对比例的定义。明确要组成比例必须具备什么条件。第三步:让学生观察图中的4个数,找找其他的比例。
粗略看上去课的流程没什么问题。上课时,才发现这节课的设置是有问题的。问题一:我指出象9.6:6.4=6:4这样的式子就是比例后,立即让学生打开课本学习比例的定义。从复习到对比例定义的出现过程较快,学生对新概念的接受有些措手不及。以致教学比例的定义时产生了抠字眼的现象。 这里不妨在出示9.6:6.4=6:4后先请同学们仔细观察式子有什么特点,在请学生看书上对比例的定义。另外,“象9.6:6.4=6:4这样的式子就是比例”这句话还能说得更精准些,可以说成:“象9.6:6.4=6:4这样的等式就是比例”。虽然等式包含于式子中,把等式说成式子也不错,但这里说成等式更能让学生充分理解比例的意义。问题二:对比例可以用分数形式的处理不当。上课前发现备课时漏备了比例可以用分数形式表示的教学。课堂上担心自己又遗忘,出示9.6:6.4=6:4后我就介绍了分数形式如何表示。以致在完成第三步教学时,出现很多学生写其他比例时同时写出了9.6:6=6.4:4和9.6/6=6.4/4。这两个比例表示的是同一个比例,只要写一个就可以。对于比例可以用分数形式表示的教学我太过急躁。其实这个知识也是可以放在最后教学。问题三:教学第三步严重脱离问题情境。点评时,孙校长一针见血的指出:本节课的教学脱离了教学情境。脱离教学情境的课堂,对培养学生的能力和技能方面很不利,脱离教学情境的课堂是失败的。关于第三步的教学,应该让学生回到情境图中,让学生体会图中的对应关系,再写出比例。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号