当前位置:首页 > 教案教学设计 > 数学教案

点和圆的位置关系教案课后反思

日期:2022-02-14

这是点和圆的位置关系教案课后反思,是优秀的数学教案文章,供老师家长们参考学习。

点和圆的位置关系教案课后反思

点和圆的位置关系教案课后反思第 1 篇

学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习重点:点与圆的位置关系,三点定圆的定理

学习难点:反证法的运用

学具准备:圆规,直尺

教学过程:

一、探究点与圆的位置关系

1,提出问题:爱好运动的向银元、叶少雄、李易然三人相

邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁

掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别

是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?

这一现象体现了平面内的位置关系.

2,归纳总结:如图1所示,设⊙O的半径为

1

r,点到圆心的距离为d,

A点在圆内,则d r,B点在圆上,则d r,C点在圆

外,则d r

反之,在同一平面上,已知圆的半径为r,则: .....

若d>r,则A点在圆 ;若d<r,则B点在圆 ;

若d=r,则C点在圆 。

结论:设⊙O的半径为r,点P到圆的距离为d,

则有:点P在圆外_____d>r; 点P在圆上_____d=r;点

P在圆内_____d

例:如图用4位同学摆成矩形ABCD,边AB=3厘米,AD=4

厘米

(1

第一文库网 )以点A为圆心,3厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

(2)以点A为圆心,4厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何

(3)以点A为圆心,5厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

A

B

D A D C A B D C C B

二、探究确定圆的条件

1,问题:过一点可作几条直线?过两点呢?三点呢?

类比问题:那么究竟多少个点就可以确定一个圆呢?

试一试:画图准备:

圆的 确定圆的大小,圆的 确定圆的位置;

也就是说,若如果圆的这个圆就确定了。

画图:

2、画过一个点的圆。已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画 个。

3、画过两个点的圆。

提示:画这个圆的关键是找到圆心,画出来的圆要同时经

过A、B两点,

那么圆心到这两点距离 ,可见,圆心在线段AB的 上。

小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上。

4、画过三个点(不在同一直线)的圆。

提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆.

小结:不在同一条直线上的三个点确定 个圆. .....

5,过在同一直线上的`三点能做圆吗?

通过路边苦李的故事体会反证法的思想及运用方法。

三,有关概念:

1,三角形的外接圆。

2,三角形的外心。

3,圆的内接三角形。

四,学以致用

1,如何解决“破镜重圆”的问题。

2,已知:∠A, ∠ B, ∠ C是△ABC的内角.

求证: ∠ A, ∠ B, ∠ C中至少有一个不小于60°

3、写出用“反证法”证明下列命题的第一步“假设”.

(1)互补的两个角不能都大于90°.

(2)△ABC中,最多有一个钝角

五,小结

这节课你学到了什么?说出来和大家分享一下!

六,拓展延伸

分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.

点和圆的位置关系教案课后反思第 2 篇

课 题: 两圆的位置关系

教学目的:掌握两圆的五种位置关系及判定方法;;

教学重点:两圆的五种位置的判定.

教学难点 :知识的综合运用.

教学过程 :一,复习引入:

请说出直线和圆的位置关系有哪几种?

研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径r的大小关系,

直线和圆的位置关系

相 离

相 切

相 交

直线和圆的公共点个数

0

1

2

d与r的关系

d>r

d=r

d

二.讲解: 圆和圆位置关系.

⑴两圆的公共点个数;

⑵圆心距d与两圆半径R、r的大小关系.

两圆的'位置关系

外 离

外 切

相 交

内 切

内 含

两圆的交点个数

0

1

2

1

0

d与R、r的关系

d>R+r

d=R+r

R-r

d=R-r

d

定理 设两个圆的半径为R和r,圆心距为d,则

⑴d>R+r两圆外离;

⑵d=R+r 两圆外切;

⑶R-r

⑷d=R-r(R>r) 两圆内切;

⑸dr)两圆内含.

三.巩固:

⒈若两圆没有公共点,则两圆的位置关系是( )

(A)外离 (B)相切 (C)内含 (D)相离

⒉若两圆只有一个交点,则两圆的位置关系是( )

(A)外切 (B)内切 (C)外切或内切 (D)不确定

⒊已知:⊙O1 和⊙O2的半径分别为3cm和4cm,根据下列条件判断⊙O1 和⊙2的位置关系.

⑴O1O2=8cm; ⑵O1O2=7cm; ⑶O1O2=5cm;

⑷O1O2=1cm; ⑸O1O2=0.5cm; ⑹O1O2=0,即⊙O1 和⊙O2重合;

四作业 :P137 2.3.4.5

点和圆的位置关系教案课后反思第 3 篇

学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习重点:点与圆的位置关系,三点定圆的定理

学习难点:反证法的运用

学具准备:圆规,直尺

教学过程:

一、探究点与圆的位置关系

1,提出问题:爱好运动的向银元、叶少雄、李易然三人相

邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁

掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别

是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?

这一现象体现了平面内的位置关系.

2,归纳总结:如图1所示,设⊙O的半径为

1

r,点到圆心的距离为d,

A点在圆内,则d r,B点在圆上,则d r,C点在圆

外,则d r

反之,在同一平面上,已知圆的半径为r,则: .....

若d>r,则A点在圆 ;若d<r,则B点在圆 ;

若d=r,则C点在圆 。

结论:设⊙O的半径为r,点P到圆的距离为d,

则有:点P在圆外_____d>r; 点P在圆上_____d=r;点

P在圆内_____d

例:如图用4位同学摆成矩形ABCD,边AB=3厘米,AD=4

厘米

(1

第一文库网 )以点A为圆心,3厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

(2)以点A为圆心,4厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何

(3)以点A为圆心,5厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

A

B

D A D C A B D C C B

二、探究确定圆的条件

1,问题:过一点可作几条直线?过两点呢?三点呢?

类比问题:那么究竟多少个点就可以确定一个圆呢?

试一试:画图准备:

圆的 确定圆的大小,圆的 确定圆的位置;

也就是说,若如果圆的这个圆就确定了。

画图:

2、画过一个点的圆。已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画 个。

3、画过两个点的圆。

提示:画这个圆的关键是找到圆心,画出来的圆要同时经

过A、B两点,

那么圆心到这两点距离 ,可见,圆心在线段AB的 上。

小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上。

4、画过三个点(不在同一直线)的圆。

提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆.

小结:不在同一条直线上的三个点确定 个圆. .....

5,过在同一直线上的`三点能做圆吗?

通过路边苦李的故事体会反证法的思想及运用方法。

三,有关概念:

1,三角形的外接圆。

2,三角形的外心。

3,圆的内接三角形。

四,学以致用

1,如何解决“破镜重圆”的问题。

2,已知:∠A, ∠ B, ∠ C是△ABC的内角.

求证: ∠ A, ∠ B, ∠ C中至少有一个不小于60°

3、写出用“反证法”证明下列命题的第一步“假设”.

(1)互补的两个角不能都大于90°.

(2)△ABC中,最多有一个钝角

五,小结

这节课你学到了什么?说出来和大家分享一下!

六,拓展延伸

分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.

点和圆的位置关系教案课后反思第 4 篇

  学习目标:1、理解点与圆的位置关系由点到圆心的距离决定;

  2、理解不在同一条直线上的三个点确定一个圆;

  3、会画三角形的外接圆,熟识相关概念

  学习过程

  一、点与圆的位置三种位置关系

  生活现象:阅读课本,这一现象体现了平面内点与圆的位置关系. 如图1所示,设⊙O的半径为r,

  A点在圆内,OA r

  B点在圆上,OB r

  C点在圆外,OC r

  反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点:

  若OA>r,则A点在圆 ;

  若OB<r,则B点在圆 ;

  若OC=r,则C点在圆 。

  二、多少个点可以确定一个圆

  问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢? 试一试

  画图准备:

  1、圆的 确定圆的大小,圆 确定圆的位置;

  也就是说,若如果圆的 和 确定了,

  那么,这个圆就确定了。

  2、如图2,点O是线段AB的垂直平分线

  上的任意一点,则有OA OB 图2

  画图:

  1、画过一个点的圆。

  右图,已知一个点A,画过A点的圆.

  小结:经过一定点的圆可以画 个。

  2、画过两个点的圆。

  右图,已知两个点A、B,画过同时经过A、B两点的圆.

  提示:画这个圆的关键是找到圆心,

  画出来的圆要同时经过A、B两点,

  那么圆心到这两点距离 ,可见,

  圆心在线段AB的 上。

  小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上

  3、画过三个点(不在同一直线)的圆。

  提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的.圆的圆心在线段AB的垂直平分线上,

  而经过B、C两点所画的圆的圆心在

  线段BC的垂直平分线上,此时,这

  两条垂直平分线一定相交,设交点为O,

  则OA=OB=OC,于是以O为圆心,

  OA为半径画圆,便可画出经过A、B、C

  三点的圆.

  小结:不在同一条直线上的三个点确定 个圆.

  三、概括

  我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点.

  如图:如果⊙O经过△ABC的三个顶点,

  则⊙O叫做△ABC的 ,圆心O叫

  做△ABC的 ,反过来,△ABC叫做

  ⊙O的 。

  △ABC的外心就是AC、BC、AB边的 交点。

  四、分组练习

  (A组)

  1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为( )

  A.在圆上 B.在圆外 C.在圆内 D.不确定

  2、任意画一个三角形,然后再画这个三角形的外接圆.

  3、判断题:

  ①三角形的外心到三边的距离相等………………( )

  ②三角形的外心到三个顶点的距离相等。…………( )

  4、三角形的外心在这个三角形的( )

  A.内部 B.外部 C.在其中一边上 D.以上三种都可能

  5、能过画图的方法来解释上题。

  在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)

  6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为

  7、若点O是△ABC的外心,∠A=70°,则∠BOC=

  (B组)

  8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是( )

  A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

  9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号