当前位置:首页 > 教案教学设计 > 数学教案

点和圆的位置关系教学反思

日期:2022-02-14

这是点和圆的位置关系教学反思,是优秀的数学教案文章,供老师家长们参考学习。

点和圆的位置关系教学反思

点和圆的位置关系教学反思第 1 篇

学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习重点:点与圆的位置关系,三点定圆的定理

学习难点:反证法的运用

学具准备:圆规,直尺

教学过程:

一、探究点与圆的位置关系

1,提出问题:爱好运动的向银元、叶少雄、李易然三人相

邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁

掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别

是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好?

这一现象体现了平面内的位置关系.

2,归纳总结:如图1所示,设⊙O的半径为

1

r,点到圆心的距离为d,

A点在圆内,则d r,B点在圆上,则d r,C点在圆

外,则d r

反之,在同一平面上,已知圆的半径为r,则: .....

若d>r,则A点在圆 ;若d<r,则B点在圆 ;

若d=r,则C点在圆 。

结论:设⊙O的半径为r,点P到圆的距离为d,

则有:点P在圆外_____d>r; 点P在圆上_____d=r;点

P在圆内_____d

例:如图用4位同学摆成矩形ABCD,边AB=3厘米,AD=4

厘米

(1

第一文库网 )以点A为圆心,3厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

(2)以点A为圆心,4厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何

(3)以点A为圆心,5厘米为半径作圆A,则点B、C、

D与圆A的位置关系如何?

A

B

D A D C A B D C C B

二、探究确定圆的条件

1,问题:过一点可作几条直线?过两点呢?三点呢?

类比问题:那么究竟多少个点就可以确定一个圆呢?

试一试:画图准备:

圆的 确定圆的大小,圆的 确定圆的位置;

也就是说,若如果圆的这个圆就确定了。

画图:

2、画过一个点的圆。已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画 个。

3、画过两个点的圆。

提示:画这个圆的关键是找到圆心,画出来的圆要同时经

过A、B两点,

那么圆心到这两点距离 ,可见,圆心在线段AB的 上。

小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上。

4、画过三个点(不在同一直线)的圆。

提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆.

小结:不在同一条直线上的三个点确定 个圆. .....

5,过在同一直线上的`三点能做圆吗?

通过路边苦李的故事体会反证法的思想及运用方法。

三,有关概念:

1,三角形的外接圆。

2,三角形的外心。

3,圆的内接三角形。

四,学以致用

1,如何解决“破镜重圆”的问题。

2,已知:∠A, ∠ B, ∠ C是△ABC的内角.

求证: ∠ A, ∠ B, ∠ C中至少有一个不小于60°

3、写出用“反证法”证明下列命题的第一步“假设”.

(1)互补的两个角不能都大于90°.

(2)△ABC中,最多有一个钝角

五,小结

这节课你学到了什么?说出来和大家分享一下!

六,拓展延伸

分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.

点和圆的位置关系教学反思第 2 篇

  教学目标

  (一)教学知识点

  1.了解圆与圆之间的几种位置关系.

  2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  (二) 能力训练要求

  1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.

  2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.

  (三)情感与价值观要求

  1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.

  教学重点

  探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.

  教学难点

  探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.

  教学方法

  教师讲解与学生合作交流探索法

  教具准备

  投 影片三张

  第一张:(记作3. 6A)

  第二张:(记作3.6B)

  第三张:(记作3.6C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.

  Ⅱ.新课讲解

  一、想一想

  [师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?

  [生]如自行车的两个车轮间的位置关 系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.

  [师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.

  二、探索圆和圆的位置关系

  在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?

  [师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.

  [生]我总结出共有五种位置关系,如下图:

  [师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外 部来考虑.

  [生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;

  (2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;

  (3)相交:两个圆有两个公共点,一 个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;

  (4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;

  (5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.

  [师]总结得很出色,如果只从公共点的'个数来考虑,上面的五种位置关系中有相同类型吗?

  [生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.

  [师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.

  经过大家的讨论我们可知:

  投影片(24.3A)

  (1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.

  (2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离 ,相切

  三、例题讲解

  投影片(24.3B)

  两个同样大小的肥皂 泡黏在一起,其剖面如图所示(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直 线,TP、NP分别为两圆的切线,求TPN的大小.

  分析:因为两个圆大小相同,所以 半径OP=O'P=OO',又TP、NP分别为两圆的切 线,所以PTOP,PNO'P,即OPT=O'PN=90,所以TPN等于36 0减去OPT+O'PN+OPO'即可.

  解 :∵OP=OO'=PO',

  △PO'O是一个等边三角形.

  OPO'=60.

  又∵TP与NP分别为两圆的切线,

  TPO =NPO'=90.

  TPN=360-290-60=120.

  四、想一想

  如图(1),⊙O1与⊙O2外切,这个图是 轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2 )〕

  [师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一 个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三 步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.

  证明:假设切点T不在O1O2上.

  因为圆是轴对称图形,所以T关于O1O2的对称点T'也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.

  则T在O1O2上.

  由此可知图(1)是轴对称图形,对 称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.

  在图(2)中应有同样的结论.

  通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心 线.

  五、议一议

  投影片(24.3C)

  设两圆的半径分别为R和r.

  (1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?

  (2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?

  [师]如图,请大家互相交流.

  [生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线 O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.

  在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以 O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.

  [师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.

  当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内 切,即两圆相内切 d=R-r.

  Ⅲ.课堂练习

  随堂练习

  Ⅳ.课时小结

  本节课学习了如下内容:

  1.探索圆和圆的五种位置关系;

  2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;

  3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.

  Ⅴ.课后作业 习题24.3

  Ⅵ.活动与探究

  已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.

  分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.

  解:连接O2O3、OO3,

  O2OO3=90,OO3=2R-r,

  O2O3=R+r,OO2=R.

  (R+r)2=(2R-r)2+R2.

  r= R.

  板书设计

  24.3 圆和圆的位置关系

  一、1.想一想

  2.探索圆和圆的位置关系

  3.例题讲解

  4.想一想

  5.议一议

  二、课堂练习

  三、课时小结

  四、课后作业

点和圆的位置关系教学反思第 3 篇

  教学目标

  (一)教学知识点

  了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

  (二)能力训练要求

  1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.

  2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

  (三)情感与价值观要求

  1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

  2.学会与人合作,并能与他人交流思维的过程和结果.

  教学重点

  1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.

  2.掌握过不在同一条直线上的三个点作圆的方法.

  3.了解三角形的外接圆、三角形的外心等概念.

  教学难点

  经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

  教学方法

  教师指导学生自主探索交流法.

  教具准备

  投影片三张

  第一张:(记作3.4A)

  第二张:(记作3.4B)

  第三张:(记作 3.4C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.

  Ⅱ.新课讲解

  1.回忆及思考

  投影片(3.4A)

  1.线段垂直平分线的性质 及作法.

  2.作圆的关键是什么?

  [生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.

  作法:如下图,分别以A、B为圆心,以大于 AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段A B的垂直平分线,直线CD上的任一点到A与B的距离相等.

  [师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?

  [生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.

  2.做一做(投影片3.4B)

  (1)作圆,使它经过已知点A,你能作出几个这样的圆?

  (2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?

  (3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?

  [师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.

  [生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆. 由于圆心是任意的.因此这样的'圆有无数个.如图(1).

  (2)已 知点A、B都在圆上,它们到圆心的距离都等于半径.因此 圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任 意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).

  (3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三 点的距离相等,就是所作圆的圆心.

  因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.

  [师]大家的分析很有道理,究竟应该怎样找圆心呢?

  3.过不在同一条直线上的三点作圆.

  投影 片(3.4C)

  作法 图示

  1.连结AB、BC

  2.分别作AB、BC的垂直

  平分线DE和FG,DE和

  FG相交于点O

  3.以O为圆心,OA为半径作圆

  ⊙O就是所要求作的圆[

  他作的圆符合要求吗?与同伴交流.

  [生]符合要求.

  因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.

  [师]由上可 知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.

  不在同一直线上的三个点确定一个圆.

  4.有关定义

  由上可知,经过三角形的三个顶点可以作一个 圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个 三角形叫这个圆的内接三角形.

  外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).

  Ⅲ.课堂练习

  已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?

  解:如下图.

  O为外接圆的圆心,即外心.

  锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

  Ⅳ.课时小结

  本节课所学内容如下:

  1.经历不在同一条直线上的 三个点确定一个圆的探索过程.

  方法.

  3.了解三角形的外接圆,三角形的外心等概念.

  Ⅴ.课后作业

  习题3.6

  Ⅵ.活动与探究

  如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?

  解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.

点和圆的位置关系教学反思第 4 篇

  一、素质教育目标

  ㈠知识教学点

  ⒈使学生理解直线和圆的位置关系。

  ⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

  ㈡能力训练点

  ⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。⒉在7.1节我们曾学习了“点和圆”的位置关系。

  ⑴点P在⊙O上 OP=r

  ⑵点P在⊙O内OP<r

  ⑶点P在⊙O外OP>r

  初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

  ㈢德育渗透点

  在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

  二、教学重点、难点和疑点

  ⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

  ⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

  ⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

  三、教学过程

  ㈠情境感知

  ⒈欣赏网页flash动画,《海上日出》

  提问:动画给你形成了怎样的几何图形的印象?

  ⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

  ⒊活动:学生动手画,老师巡视。当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。

  ⒋直线和圆的位置关系的定义。

  ①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。

  ②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。

  ③直线和圆没有公共点时,叫做直线和圆相离。

  ㈡重点、难点的学习与目标完成过程,

  ⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。

  ⒉提问:刚刚的变化,是什么引起直线与圆的.位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

  ⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

  ⒋学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。

  ①直线ι和⊙O相交d<r

  ②直线ι和⊙O相切d=r

  ③直线ι和⊙O相离d>r

  提问:反过来,上述命题成立吗?

  ㈢尝试练习

  ⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离为 ⑴5.5cm; ⑵6cm; ⑶8cm那么直线和圆有几个公共点?为什么?

  ⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

  评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。

  ⒊经过以上练习,谈谈你的学习体会。

  强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!

  ㈣例题学习(P104)

  在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

  ⑴ r=2cm⑵ r=2.4cm⑶ r=3cm

  ⒈学生独立思考后,小组交流。

  ⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢?

  ⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

  ⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义.

  ⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求?

  学生讨论,并用z+z超级画板的变量动画引导。

  ㈣话说收获:

  为了培养学生阅读教材的习惯,请学生看教材P.103—104,从中总结出本课学习的主要内容有:

  四、作业

  P105 练习2

  P115 习题A 2、3

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号