当前位置:首页 > 教案教学设计 > 数学教案

直线的点斜式方程教案

日期:2022-02-16

这是直线的点斜式方程教案,是优秀的数学教案文章,供老师家长们参考学习。

直线的点斜式方程教案

直线的点斜式方程教案第 1 篇

  一、内容及其解析

  1.内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课.学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线.本节要求利用确定一条直线的几何要素——直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线.

  2.解析:直线方程属于解析几何的基础知识,是研究解析几何的开始.从整体来看,直线方程初步体现了解析几何的实质——用代数的知识研究几何问题.从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础.对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义.从本节来看, 学生对直线既是熟悉的,又是陌生的.熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程.直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位.

  二、目标及其解析

1.目标

掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程.

2.解析

①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率. 知道建立直线方程就是将确定直线的几何要素用代数形式表示出来.

②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率.

③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想.

④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想.

⑤在建立直线方程的过程中,体会数形结合思想.在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想.

三、教学问题诊断分析

1.学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别.

2.学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做.因此还是要跟学生讲清坐标法的实质——把几何问题转化成代数问题,用代数运算研究几何图形性质.

3.由于学生没有学习“曲线与方程”,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的.这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的.

  四、教法与学法分析

  1、教法分析

  新课标指出,学生是教学的主体.教师要以学生活动为主线.在原有知识的基础上,构建新的知识体系.本节课可采用“启发式问题教学法”教学.通过问题串,启发学生自主探究来达到对知识的发现和接受.通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神.并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法.

  2、学法分析

  改善学生的学习方式是高中数学课程追求的基本理念.学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累.独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的“再创造”的过程.为学生形成积极主动的、多样的学习方式创造有利的条件.以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯.

通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求 的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃.让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力.

  五、教学过程设计

  问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率.

问题2:建立直线方程的实质是什么?

[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来.也就是将直线上点的坐标满足的条件用方程表示出来.

引例:若直线 经过点 ,斜率为 ,点 在直线 上运动,那么点 的坐标 满足什么条件?

[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤.

问题2.1要得到坐标 满足什么条件,就是找出 与 、斜率为 之间的关系,它们之间有何种关系?

(过 与 两点的直线的斜率为 )

[设计意图]让学生寻找确定直线的条件,体会“动中找静”.

问题2.2 如何将上述条件用代数形式表示出来?

[设计意图]让学生理解和体会用坐标表示确定直线的条件.

用代数式表示出来就是 ,即 .

问题2.3为什么说 是满足条件的直线方程?

[设计意图] 让学生初步感受直线与直线方程的关系.

此时 的坐标也满足此方程.所以当点 在直线 上运动时,其坐标 满足 .

另外以方程 的解为坐标的点也在直线 上.

所以我们得到经过点 ,斜率为 的直线方程是 .

问题2.4:能否说方程 是经过 ,斜率为 的直线方程?

[设计意图] 让学生初步感受直线(曲线)方程的完备性.尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔.

问题3:推广:已知一直线过一定点 ,且斜率为k,怎样求直线 的方程?

[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力.

问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

[设计意图]引导学生掌握解析几何取点的方法.

引导学生求出直线的点斜式方程

注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的.为以后学习曲线与方程打好基础.教学中让学生感觉到这一点就可以.不必做过多解释.

问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

[设计意图]让学生初步感受解析几何求曲线方程的步骤.

①设点---用 表示曲线上任一点 的坐标;

②寻找条件----写出适合条件;

③列出方程----用坐标表示条件,列出方程 ;

④化简---化方程 为最简形式;

⑤证明----证明以化简后的方程的解为坐标的点都是曲线上的点.

例1分别求经过点 ,且满足下列条件的直线 的方程,并画出直线 .

⑴倾斜角 ;

⑵斜率 ;

⑶与 轴平行;

⑷与 轴平行.

[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作“公式”用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件.

注:⑴应用直线的点斜式方程的条件是:①定点,②斜率 存在,即直线的倾斜角 .

⑵ 与 的区别.后者表示过 ,且斜率为k的直线方程,而前者不包括 .

⑶当直线的倾斜角 时,直线的斜率 ,直线方程是 .

⑷当直线的倾斜角 时,此时不能直线的点斜式方程表示直线,直线方程是 .

练习:1. .

2.已知直线 的方程是 ,则直线的斜率为 ,倾斜角为 ,这条直线经过的一个已知点为 .

[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程.

问题6:特别地,如果直线 的斜率为 ,且与 轴的交点坐标为(0 ,b),求直线 的方程.

[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程.

将斜率与定点代入点斜式直线方程可得:

  说明:我们把直线 与y轴交点(0 ,b)的纵坐标b叫做直线 在y轴上的截距.这个方程是由直线的斜率 与它在y轴上的截距b确定,所以叫做直线的斜截式方程.

  注(1)截距可取任意实数,它不同于距离. 直线 在 轴上截距的是 .

  (2)斜截式方程中的k和b有明显的几何意义.

  (3)斜截式方程的使用范围和斜截式一样.

问题7:直线的斜截式方程与我们学过的一次函数的类似.我们知道,一次函数的图像是一条直线.你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质.函数图像是以形助数,而解析几何是以数论形.

练习:1. .

2.直线 的斜率为2,在 轴上的截距为 ,求直线 的方程.

[设计意图]让学生明确截距的含义.

3.直线 过点 ,它的斜率与直线 的斜率相等,求直线 的方程.

[设计意图]让学生进一步理解直线斜截式方程的结构特征.

4.已知直线过两点 和 ,求直线 的方程.

[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔.

  例2:已知直线 ,试讨论

  (1) 与 平行的条件是什么?

  (2) 与 重合的条件是什么?

(3) 与 垂直的条件是什么?

说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画.

②教学中从两个方面来说明,若两直线平行,则 且 ;反过来,若 且 ,则两直线平行.

③若直线 的斜率不存在, 与之平行、垂直的条件分别是什么?

练习:

  问题8:本节课你有哪些收获?

  要点:(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别.

  (2)两种形式的方程要在熟记的基础上灵活运用.

  (3)要注意两种形式方程的不适用范围.

直线的点斜式方程教案第 2 篇

一、教学目标

1.知识与技能:理解直线方程的点斜式,会根据一点和斜率求直线方程。

2.过程与方法:通过斜率知识,能正确利用直线的点斜式求直线方程;

3.情感态度与价值观:逐步养成数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点。

二、教学重难点

重点:直线的点斜式方程和斜截式 方程。

难点:直线的点斜式方程和斜截式方程的应用。

三、教学方法

讲授法、多媒体演示法、小组讨论法

四、教学过程

(一)复习导入

同学们上节课学习了直线的斜率,在直角坐标系内确定一条直线,要求这条直线的斜率要具备哪些条件?学生回顾,并回答。

多媒体展示:直线l斜率为2,过点P(0,3),Q(x,y)。

提问:(1)过点P(0,3),Q(x,y),斜率是k的直线l上的点,其坐标都满足方程吗?

(2)坐标满足方程的点都在经过P(0,3),Q(x,y),斜率为k的直线l上吗?

学生验证,教师引导. 然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式

引出课题:像这种利用斜率和点的坐标求出直线方程的方式,就是我们今天学习的直线方程的点斜式。

(二)新课讲授

直线l经过点P0 (x0, y0),且斜率为k设点P (x, y)是直线l上的任意一点,请建立x,y与k,x0, y0之间的关系。

《直线的点斜式方程》教案

追问:(1)(2)式等价吗?任意直线的方程都可以用这个式子表达吗?

(三)巩固提升

预设:垂直的情况不适用,因为K不存在。

结论:点斜式适用条件:斜率存在,斜率不存在,表达式x =x0。

例题:分别求出通过点P(3,4)且满足下列条件的直线方程,并画出图形。

斜率k=2;(2)与x轴平行;(3)与x轴垂直。小组讨论解答.

(四)小结作业

师生共同回顾本课主要内容。

探究作业:同学们思考一下,直线的方程有没有其他形式,结合本课知识,探究其他形式的直线方程。

五、板书设计

直线的点斜式方程教案第 3 篇

¤知识要点:

1. 点斜式:直线l过点P0(x0,y0),且斜率为k,其方程为y?y0?k(x?x0). 2. 斜截式:直线l的斜率为k,在y轴上截距为b,其方程为y?kx?b.

3. 点斜式和斜截式不能表示垂直x轴直线. 若直线l过点P0(x0,y0)且与x轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为x?x0?0,或x?x0. 4. 注意:

y?y0

?k与y?y0?k(x?x0)是不同的方程,前者表示的直线上缺少一点x?x0

P0(x0,y0),后者才是整条直线.

¤例题精讲:

【例1】写出下列点斜式直线方程:

(1)经过点A(2,5),斜率是4; (2)经过点B(3,?1),倾斜角是30.

【例2】已知直线y?kx?3k?1.(1)求直线恒经过的定点;(2)当?3?x?3时,直线上的点都在x轴上方,求实数k的取值范围.

【例3】光线从点A(-3,4)发出,经过x轴反射,再经过y轴反射,光线经过点 B(-2,6),求射入y轴后的反射线的方程.

点评:由物理中光学知识知,入射线和反射线关于法线对称. 光线的反射问题,也常常需要研究对称点的问题. 注意知识间的相互联系及学科间的相互渗透. 【例4】已知直线l经过点P(?5,?4),且l与两坐标轴围成的三角形的面积为5,求直线l的方程.

点评:已知直线过一点时,常设其点斜式方程,但需注意斜率不存在的直线不能用点斜式表示,从而使用点斜式或斜截式方程时,要考虑斜率不存在的情况,以免丢解. 而直线在坐标轴上的截距,可正、可负,也可以为零,不能与距离混为一谈,注意如何由直线方程求其在坐标轴上的截距.

¤知识要点:

1. 两点式:直线l经过两点P1(x1,y1),P2(x2,y2),其方程为

y?y1x?x1

www.unjs.com?, y2?y1x2?x1

2. 截距式:直线l在x、y轴上的截距分别为a、b,其方程为?

xay

?1. b

3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.

4. 线段P1P2中点坐标公式(¤例题精讲:

【例1】已知△ABC顶点为A(2,8),B(?4,0),C(6,0),求过点B且

将△ABC面积平分的直线方程.

【例2】菱形的两条对角线长分别等于8和6,并且分别位于x轴和y轴上,求菱形各边所在的直线的方程

直线的一般式方程

¤知识要点:

1. 一般式:Ax?By?C?0,注意A、B不同时为0. 直线一般式方程

Ax?By?C?0(B?0)化为斜截式方程y??

x1?x2y1?y2

,). 22

AAC

x?,表示斜率为?,y轴上截距

BBB

为?

C

的直线. B

2 与直线l:Ax?By?C?0平行的直线,可设所求方程为Ax?By?C'?0;与直

线Ax?By?C?0垂直的直线,可设所求方程为Bx?Ay?C'?0. 过点P(x0,y0)的直线可写为A(x?x0)?B(y?y0)?0.

经过点M0,且平行于直线l的直线方程是A(x?x0)?B(y?y0)?0; 经过点M0,且垂直于直线l的直线方程是B(x?x0)?A(y?y0)?0.

3. 已知直线l1,l2的方程分别是:l1:A1x?B1y?C1?0(A1,B1不同时为0),l2:A?C?0(A2,B2不同时为0),则两条直线的位置关系可以如下判别: 2x?2By2

(1)l1?l2?A1A2?B1B2?0; (2)l1//l2?A1B2?A2B1?0,AC12?A2B1?0; (3)l1与l2重合?A1B2?A2B1?0,AC12?A2B1?0; (4)l1与l2相交?A1B2?A2B1?0.

如果A2B2C2?0时,则l1//l2?相交?

A1B1

?

. A2B2

A1B1C1ABC??;l1与l2重合?1?1?1;l1与l2A2B2C2A2B2C2

¤例题精讲:

【例1】已知直线l1:x?my?2m?2?0,l2:mx?y?1?m?0,问m为何值时:(1)l1?l2;(2)l1//l2.

【例2】(1)求经过点A(3,2)且与直线4x?y?2?0平行的直线方程;(2)求经过点B(3,0)且与直线2x?y?5?0垂直的直线方程.

【例3】已知直线l的方程为3x+4y-12=0,求与直线l平行且过点(-1,3)的直线的方程.

点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式A(x?x0)?B(y?y0)?0而直接写出方程,即3(x?1)?4(y?3)?0,再化简而得.

两条直线的交点坐标

¤知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组

?A1x?B1y?C1?0

. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;?

Ax?By?C?0?222

若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.

2. 方程?(A1x?B1y?C1)?(A2x?B2y?C2)?0为直线系,所有的直线恒过一个定点,其定点就是A1x?B1y?C1?0与A2x?B2y?C2?0的交点. ¤例题精讲:【例1】判断下列直线的位置关系. 如果相交,求出交点坐标.直线l1: nx?y?n?1, l2: ny?x?2n.

【例2】求经过两条直线2x?y?8?0和x?2y?1?0的交点,且平行于直线4x?3y?7?0的直线方程.

两点间的距离

两点P1(x1,y1),P2(x2,y2),则两点间的距离为:

.

特别地,当P1,P2所在直线与x轴平行时,|PP1,P2所在直线与y轴12|?|x1?x2|

;当P

平行时,|PP1,P2在直线y?kx?b上时,|PP12|?|y1?y2|;当P12|?x1?x2|. 2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.

¤例题精讲:

【例1】在直线2x?y?0上求一点P,使它到点M(5,8)的距离为5,并求直线PM的方程.

【例2】直线2x-y-4=0上有一点P,求它与两定点A(4,-1),B(3,4)的距离之差的最大值.

【例3】已知AO是△ABC中BC边的中线,证明|AB|2+|AC|2=2(|AO|2+|OC|2).

点到直线的距离及两平行线距离

¤知识要点:1. 点P(x0,y0)到直线l:Ax?By?C?0的距离公式为

d?

2. 利用点到直线的距离公式,可以推导出两条平行直线l1:Ax?By?C1?0,

l2:Ax?By?C2?0之间的距离公式d?

,推导过程为:在直线l2上任取一

y?C0,即A

xy??C点P(x0,y0),则Ax0?B02?

0?B02. 这时点P(x0,y0)到直线l1:Ax?By?C1?0的距离为d?

?

.

¤例题精讲:

【例1】求过直线l1:y??x?

1310

和l2:3x?y?0的交点并且与原点相距为1的直线3

l的方程.

【例2】在函数y?4x2的图象上求一点P,使P到直线y?4x?5的`距离最短,并求这个最短的距离.

圆的标准方程

¤知识要点:1. 圆的标准方程:方程(x?a)2?(y?b)2?r2(r?0)表示圆心为A(a,b),半径长为r的圆.

2. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;

(2)待定系数法:先根据条件列出关于a、b、r的方程组,然后解出a、b、r,再代入标准方程. ¤例题精讲: 【例1】过点A(1,?1)、B(?1,1)且圆心在直线x+y-2=0上的圆的方程是( ). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 【例2】求下列各圆的方程: (1)过点A(?2,0),圆心在(3,?2);(2)圆心在直线2x?y?7?0上的圆C与y轴交于两点A(0,?4),B(0,?2)

圆的一般方程

¤知识要点:1. 圆的一般方程:方程x2?y2?Dx?Ey?F?0 (D2?E2?4F?0)表示圆心是(?,?

)D2

E2

. 2. 轨迹方程是指点动点M的坐标(x,y)满足的关系式.

¤例题精讲:

【例1】求过三点A(2,2)、B(5,3)、C(3,-1)的圆的方程.

【例2】设方程x2?y2?2(m?3)x?2(1?4m2)y?16m4?7m2?9?0,若该方程表示一个圆,求m的取值范围及圆心的轨迹方程.

直线与圆的位置关系

¤知识要点:1. 直线与圆的位置关系及其判定: 方法一:方程组思想,由直线与圆的方程组成的方程组,消去x或(y),化为一元二次方程,由判别式符号进行判别;

方法二:利用圆心(a,b)到直线Ax?By?C?

0的距离d?

,比较d

与r的大小.

(1)相交?d?r? ??0;(2)相切?d?r???0;(3)相离?d?r???0. 2. 直线与圆的相切研究,是高考考查的重要内容. 同时,我们要熟记直线与圆的各种方程、几何性质,也要掌握一些常用公式,例如点线距离公式

1】若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值

【例2】求直线l:2x?y?2?0被圆C:(x?3)2?y2?9所截得的弦长.

圆与圆的位置关系

¤知识要点:两圆的位置关系及其判定: 设两圆圆心分别为O1,O2,半径分别为r1,r2,则:

(1)两圆相交?|r1?r2|?|O1O2|?r1?r2;(2)两圆外切?|O1O2|?r1?r2;(3)两圆内切?|O1O2|?|r1?r2|; ¤例题精讲:【例1】已知圆C1:x2?y2?6x?6?0①,圆C2:x2?y2?4y?6?0② (1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.

【例2】求经过两圆x2?y2?6x?4?0和x2?y2?6y?28?0的交点,并且圆心在直线x?y?4?0上的圆的方程.

课后练习 一、选择题

1.设直线ax?by?c?0的倾斜角为?,且sin??cos??0, 则a,b满足( ) A.a?b?1

B.a?b?1

C.a?b?0

D.a?b?0

2.过点P(?1,3)且垂直于直线x?2y?3?0 的直线方程为( )

A.2x?y?1?0 B.2x?y?5?0 C.x?2y?5?0 D.x?2y?7?0 3.已知过点A(?2,m)和B(m,4)的直线与直线2x?y?1?0平行,

则m的值为( )

A.0 B.?8 C.2 D.10

4.已知ab?0,bc?0,则直线ax?by?c通过( )

A第一二三象限 B第一二四象限 C第一三四象限 D.第二三四象限 5.直线x?1的倾斜角和斜率分别是( ) A.450,1

B.1350,?1 C.900,不存在 D.1800,不存在

6若方程(2m2?m?3)x?(m2?m)y?4m?1?0表示一条直线,则实数m满足( ) A.m?0 B.m??二、填空题

1.点P(1,?1) 到直线x?y?1?0的距离是________________.

2.已知直线l1:y?2x?3,若l2与l1关于y轴对称,则l2的方程为__________; 若l3与l1关于x轴对称,则l3的方程为_________; 若l4与l1关于y?x对称,则l4的方程为___________;

3.若原点在直线l上的射影为(2,?1),则l的方程为____________________。 4.点P(x,y)在直线x?y?4?0上,则x2?y2的最小值是________________. 5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为

B(1,4),D(5,0),则直线l的方程为________________。

33

C.m?1 D.m?1,m??,m?0 22

三、解答题

1.已知直线Ax?By?C?0,

(1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x轴相交; (4)系数满足什么条件时是x轴;

(5)设P?x0,y0?为直线Ax?By?C?0上一点,证明:这条直线的方程可以写成A?x?x0??B?y?y0??0.

2.求经过直线l1:2x?3y?5?0,l2:3x?2y?3?0的交点且平行于直线

2x?y?3?0的直线方程。

3.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。

4.过点A(?5,?4)作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面

积为5.

直线的点斜式方程教案第 4 篇

  这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而 提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。引导学生小结2斜截式和点斜式方程的适用范围;3斜截式和点斜式方程的特征,并板书方程。

  本节课的思想方法:1. 分类讨论思想;2. 数形结合思想;研究问题的思维方式:1.逆向思维; 2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的.例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否唯一。 使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个 “开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。

  作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号