日期:2022-01-23
这是相似三角形的判定导入,是优秀的数学教案文章,供老师家长们参考学习。
相似三角形的判定导入第 1 篇
一、本章的两套定理
相似三角形的判定和性质教案设计
第一套(比例的有关性质):
涉及概念:
①第四比例项
②比例中项
③比的前项、后项,比的`内项、外项
④黄金分割等。
第二套:
注意:
①定理中对应二字的含义;
②平行相似(比例线段)平行。
二、相似三角形性质
1.对应线段
2.对应周长
3.对应面积。
三、相关作图
①作第四比例项;
②作比例中项。
四、证(解)题规律、辅助线
1.等积变比例,比例找相似。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来
3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将一份看着k;对于等比问题,常用处理办法是设公比为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)抽出来的办法处理。
五、 应用举例(略)
相似三角形的判定导入第 2 篇重点、难点分析三角形相似的判定数学教案设计
相似三角形的判定及应用是本节的重点也是难点.
它是本章的主要内容之一,是在学完相似三角形的基础上,进一步研究相似三角形的本质,以完成对相似三角形的定义、判定全面研究.相似三角形的判定还是研究相似三角形性质的基础,是今后研究圆中线段关系的工具.
它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.
释疑解难
(1)全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的3个定理和判定两个三角形相似的3个定理之间有内在的联系,不同之处仅在于前者是后者相似比为1的情况.
(2)相似三角形的判定定理的选择:①已知有一角相等时,可选择判定定理1与判定定理2;②已知有二边对应成比例时,可选择判定定理2与判定定理3;③判定直角三角形相似时,首先看是否可以用判定直角三角形的方法来判定,如果不能,再考虑用判定一般三角形相似的方法来判定.
(3)相似三角形的判定定理的作用:①可以用来判定两个三角形相似;②间接证明角相等、线段域比例;③间接地为计算线段的长度及角的大小创造条件.
(4)三角形相似的基本图形:①平行型:如图1,“A”型即公共角对的边平行,“×”型即对顶角对的边平行,都可推出两个三角形相似;②相交线型:如图2,公共角对的边不平行,即相交或延长线相交或对顶角所对边延长相交.图中几种情况只要配上一对角相等,或夹公共角(或对顶角)的两边成比例,就可以判定两个三角形相似,数学教案-三角形相似的判定。
(第1课时)
一、教学目标
1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.
2.继续渗透和培养学生对类比数学思想的认识和理解.
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的'能力.
4.通过学习,了解由特殊到一般的唯物辩证法的观点.
二、教学设计
类比学习,探讨发现
三、重点及难点
1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.
2.教学难点:是了解判定定理1的证题方法与思路.
四、课时安排
1课时
五、教具学具准备
多媒体、常用画图工具、
六、教学步骤
[复习提问]
1.什么叫相似三角形?什么叫相似比?
2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.
[讲解新课]
我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有
三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们
来研究能不能用较少的几个条件就能判定三角形相似呢?
上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.
我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形
全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:
问:判定两个三角形全等的方法有哪几种?
答:SAS、ASA(AAS)、SSS、HL.
问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?
答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.
问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?
答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.
(2)用类比方法找出的新命题一定要加以证明.
如图5-53,在△ABC和△ 中, , .
问:△ABC和△ 是否相似?
分析:可采用问答式以启发学生了解证明方法.
问:我们现在已经学习了哪几个判定三角形相似的方法?
答:①三角形的定义,②上一节学习的预备定理.
问:根据本命题条件,探讨时应采用哪种方法?为什么?
答:预备定理,因为用定义条件明显不够.
问:采用预备定理,必须构造出怎样的图形?
答: 或 .
问:应如何添加辅助线,才能构造出上一问的图形?
此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.
(1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.
“作相似.证全等”.
(2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE=,连结DE,“作全等,证相似”.
(教师向学生解释清楚“或延长线”的情况)
虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
简单说成:两角对应相等,两三角形相似.
, ,
∽ .
例1 已知 和 中 , , , .
求证: ∽ .
此例题是判定定理的直拉应用,应使学生熟练掌握.
例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.
已知:如图5-54,在 中,CD是斜边上的高.
求证: ∽ ∽ .
该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.
即 ∽△∽△.
[小结]
1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.
2.判定定理1的应用以及记住例2的结论并会应用.
七、布置作业
教材P238中A组3、4.
八、板书设计
数学教案-三角形相似的判定
相似三角形的判定导入第 3 篇一、教学目标
1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。
2.经历两个三角形相似的探索过程,体验用类比、实验*作、分析归纳得出数学结论的过程;通过画图、度量等*作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索*和创造*。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:
掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
2.难点:
(1)三角形相似的条件归纳、*;
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似。
3.难点的突破方法
(1)关于三角形相似的判定方法
三组对应边的比相等的两个三角形相似,教科书虽然给出了*,但不要求学生自己*,通过教师引导、讲解*,使学生了解*的方法,并复习前面所学过的有关知识,加深对判定方法的理解。
(2)判定方法
的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。
(3)讲判定方法
要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。
(4)判定方法
一定要注意区别夹角相等的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中ssa条件下三角形的不确定*,来达到加深理解判定方法2的条件的目的的。
相似三角形的判定导入第 4 篇一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.
2.掌握“两角对应相等,两个三角形相似”的判定方法.
.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
1.重点:三角形相似的判定方法1
2.难点:三角形相似的判定方法1的运用.
三、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由.
(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题.
(4)教材P48的探究3.
四、例题讲解
例1(教材P48例2).
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.
证明:略(见教材).
例2(补充)
已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.
分析:要求的是线段
DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的'判定方法来证明这两个三角形相似.
五、课堂练习
下列说法是否正确,并说明理由.
(1)有一个锐角相等的两直角三角形是相似三角形;
(2)有一个角相等的两等腰三角形是相似三角形.
六、作业
1.已知:如图,△ABC的高AD、BE交于点F.
求证:AF/BF=EF/FD.
2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:
ACBC=BECD;
(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号