日期:2022-01-28
这是一元一次方程备课教案,是优秀的数学教案文章,供老师家长们参考学习。
一元一次方程备课教案第 1 篇
【设计意图】
通过对问题1的解答,使学生回顾列方程解应用题的六个步骤.同时使学生认识到方程是解决实际问题的一种工具.
通过对问题2的探究,使学生知道为什么列方程解应用题要找相等关系,使学生经历知识的形成过程.最终达到知其然知其所以然的目的.
例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度。
解:设船在静水中的平均速度为x千米/小时,
则顺流的速度为 千米/时;逆流的速度为 千米/时.
顺流的路程= ,逆流的路程 .
相等关系为
思考:
1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?
2.怎样求甲乙两个码头之间的距离?
【师生活动】
学生自主完成空白部分,完成后组内交流.为下节课的内容做基础。
教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.
学生独立列方程并解方程.
教师找部分学生板演并讲解思路.
教师关注学生能否正确解方程.
【设计意图】
通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引领,降低问题的难度,从而将难点锁定在找相等关系上.避免难点太多,造成无从下手,重点、难点不突出的情况.利于学生形成正确的思维过程.
五、课堂小结
学生谈本节课的收获,教师进行总结。
六、作业布置
必做题:课本93页1、3题
选做题:
1.洗衣机厂今年计划生产洗衣机25 500台,其中 Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为 1:2:14,这三种洗衣机计划各生产多少台?
2.用一根长60m 的绳子围出一个矩形,使它的长是宽的1.5倍,长和宽各应是多少?
板书设计:
解一元一次方程
1.合并同类项起的作用:化简
2.移项:把等式一边的某项变号后移到另一边,叫做移项。
注意:移项变号。
例1(1)移项,得
3x-4x=1-5,
合并同类项,得
-x=-4,
系数化为1,得
x=4.
七、教学反思
实施开放式教学,倡导自主探索、合作交流的学习方式。让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法。教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念。
一元一次方程备课教案第 2 篇一、内容和内容解析
1.内容
一元一次方程的去分母解法,归纳解一元一次方程的基本步骤,用方程模型解决实际问题.
内容解析
去分母是解方程、不等式时常用的基本步骤之一,是一种同解变形.通过去分母可以使分数系数方程化为整数系数方程,从而使方程形式简化.本节课是运用去分母解方程的初次尝试,其中进一步渗透化归思想.至此,在已学习过的解方程方法基础上,可以得到解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
去分母是在保持方程左右两边相等的前提下,把分数系数方程转化为整数系数方程,其依据是等式性质2,即在方程两边同时乘分母的最小公倍数,再运用分配律进行化简,将方程转化为形式更简单的同解方程.
基于以上分析,确定本节课的教学重点:解含有分数系数的一元一次方程,归纳解一元一次方程的基本步骤,体会建立一元一次方程模型解决实际问题的思想方法.
二、目标和目标解析:
1.目标
(1)会通过去分母解一元一次方程.
(2)归纳一元一次方程解法的一般步骤,体会解方程中的化归和程序化的思想方法.
(3)体会建立方程模型的思想.
2.目标解析
达成目标(1)的标志是:知道去分母的依据,会正确地去分母,把分数系数方程整数系数方程并求解.
达成目标(2)的标志是:通过对方程特征的研究和分析,归纳出解一元一次方程的一般步骤,进一步加强对方程解法的理解,体会其中蕴含的程序化思想.
达成目标(3)的标志是:经历审题、列含有分母的一元一次方程并求解的过程,进一步领悟方程思想.
教学问题诊断分析
去分母使方程的系数都化为整数,可以使解方程过程中减少分数运算,从而使运算更加简便.本节课前学生已经学习了除去分母以外的解一元一次方程的四种基本步骤,而对于含分数系数的一元一次方程的解法还是初次接触,不熟悉去分母的方法,在去分母的过程中经常出现不知应乘几以及漏乘和对分数线的理解不全面等错误.因此,要让学生明白去分母的目的和原理,多让学生进行错例诊断,从而减少出错率.提醒学生注意分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.有的学生对解方程逐步向“x=a”转化的实质理解仍不到位,所以教师应继续加以引导,让学生深入理解解方程的本质.
本节课的教学难点是:准确列出一元一次方程,正确的进行去分母并解出方程.
教学过程设计:
1 .创设情景,引出问题
导言:英国伦敦博物馆保存着一部极其珍贵的文物——纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题.
问题1.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.
师生活动:学生审题后,教师提问:
(1)题中涉及哪些相等关系?
(2) 应怎样设未知数?如何根据相等关系列出方程? 教师展示问题,让学生思考,独立完成分析并列方程
设计意图:由纸草书中一道有关一元一次方程的问题,引出带有分数系数的一元一次方程,进而讨论用去分母解这类方程.这样选材可以起到介绍悠久的数学文化的作用.利用方程思想解决实际问题,能再一次让学生感受方程的实用价值.
2.合作交流,探究方法
问题2 这个方程与前面学过的一元一次方程有什么不同?怎么解这个方程呢?
师生活动:教师出示问题,学生思考、回答,并尝试解这个方程,学生代表将不同的解法在黑板上展示交流.
设计意图:让学生在已有经验基础上,努力尝试新的方法.
问题3 不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?
师生活动:学生讨论之后,教师通过一下问题明确去分母的方法和依据:
(1)怎样去分母呢?
(2)去分母的依据是什么?
学生思考后得出结论:
(1)在方程两边同乘各分母的最小公倍数可以去分母;(2)去分母的依据是等式的性质2.
师生共同分析解法,求出方程的解.
设计意图:通过对同一方程不同解法的探索过程,使学生感受去分母方法的简便,同时理解去分母的目的和依据,进而得出去分母的一般方法.
问题4 解方程:
师生活动:教师展示问题,师生共同完成如下分析过程.
方程左边=
注意:这里易犯的错误:方程左边=5x(3x+1),应提醒学生去分母时不能漏乘.
提问:方程右边乘以10,化简的结果是什么?
学生口答化简结果.
方程右边=(3x-2)-2(2x+3).
教师在黑板上规范展示解一元一次方程的流程.
教师提问:
(1)解含分数系数的一元一次方程的步骤包括哪些?
(2)以含x 为未知数的方程逐步向着x=a 的形式转化的主要依据是什么? 学生思考,总结并归纳出解一元一次方程的一般步骤,教师提示补充.
设计意图:学生再次认识去分母解一元一次方程的方法,归纳解一元一次方程的一般步骤,进一步体会化归的数学思想.在讨论过程中互相补充思维中不严密、不完善的地方,加深对去分母的认识,避免出现类似错误.
3.巩固新知,例题示范
例3 解下列方程:
师生活动:教师提出问题,学生独立完成过程,然后分组进行交流。对错例进行展示,归纳正确方法。
一元一次方程备课教案第 3 篇教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的.方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000.
答:原来有 50 000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程: 2x=10,
所以 x=5.
其苹果数为 3× 5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得
三、课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.
四、师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆.
五、作业
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台.这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.
一元一次方程备课教案第 4 篇【教学目标】
(一)知识技能
1.掌握解方程中的合并同类项.
2.理解并掌握移项变号法则进行解方程.
3.灵活的运用移项变号法则解决一些实际问题.
(二)数学思考
使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.
(三)解决问题
能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.
(四)情感态度
解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力
【教学重点】
利用合并同类项、移项变号法则解方程.
【教学难点】
合并同类项 、移项变号法则.
【学习过程】
一、新课导入
1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。
2.引导学生探索新知
问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?
【师生活动】
教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。 请说出你的理由?
学生:我准备用方程解决这个问题。用方程解比较简单,设出的未知数就可以当成已知的条件来用了。
教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。
学生:先设出未知数,因数去年的数量和前年的数量有关,今年的数量又和去年数量有关,因此设前年购买新桌椅x套,可以表示出:去年购买了2x套,今年购买了6x套。
教师:未知数设了,下一步应该做什了呢?
学生:列方程。
教师:列方程的根据是什么?
学生:相等关系是,前年购买的桌椅+去年买的桌椅+今年买的桌椅=270套。
教师:谁说一下?
学生:x+2x+6x=270
教师:请同学们仔细观察等号左边的三个代数式有什么特点?
学生:都含有字母x,并且x的指数相同都是1.
教师:我们在第二章的内容中学习了,具有这们特点的式子我们把它们叫什么?
学生:同类项。
教师:提到同类项了,我们就会想到什么?
学生:合并同类项
教师:谁还记得怎么合并同类项?
学生:同类项的系数相加减,字母和字母的指数不变。
教师:我们共同说一个x+2x+6x合并后的结果为
学生:9x
教师:此时方程就变成了9x=270,我们要求的是x而不是9x,如何求出x?
学生:根据等式性质2两边都除以9,得到x=30
活动:从上述方程的解决你能发现什么?
教师:同学们仔细观察原来9x的系数是9,后来根据等式的性质2两边都除以9后得到了x,此时x的系数是1,这个过程我们把它叫做系数化为1。“系数化为1”指的是使方程的一边ax化为x现在我们把这个问题解决了,请同学们仔细回忆一下我们是怎么做的。这里可能还有其他设未知数的方法(比如设今年的为x台)若出现这种情况,请同学分析比较多种解决方案中的'简易,找到最简方法.
教师:请同学们思考上面解方程中“合并同类项”起了什么作用?
学生:起到了化简的作用。
教师:出示例题-3x+0.5 x=10
学生:在练习本上做,然后集体订正。
巩固练习:第89页 练习的(2)(4).
二、问题引申、共同探究
让学生在活动中发现移项变号法则,培养学生用方程的意识解决数学中的实际的。
问题2: 把若干本书发给学生,如果每人发4本,还剩下2本;如果每人发5本,还差5本,问这个班有多少名学生?
学生活动:
学生独立思考,发现若设这个班有x名学生。
每人分4本时,共分出书的总数为4x ,加上剩余的2本,这些书的总数为(4x+2)本。
每人分5本时,需要书的总数为5x本,减去缺的5本,这些书的总数是(5x-5)
于是这些书有两种表示方法,书的总数不变,根据这个等量关系,得到方程4x+2=5x-5.
教师活动设计:让学生体会运用方程的优点,同时学生可能发现多种解决方案(比如设数的总数是x,则可以列出相应的方程)同样让学生进行比较,发现最佳方法.
思考:对于方程4x+2=5x-5两边都含有x,如何把它向x=a的形式转化?
学生活动设计:学生主动探究解决问题的方法,为了达到解方程的目的,可以运用等式性质1,把等式的两边同时减去5x,则等号的右边没有了x的项4x-5x+2=-5,再把等式的两边同时减去2,则方程的左边没有了常数项,于是得到4x-5x=-5-2,然后转化为我们所熟悉的形式,进行合并便可以解决该问题了。
教师活动设计:在学生解决问题的过程中,让学生自己观查发现变形的特点,从而让他们总结出移项变号.
活动:让学生观察由方程4x+2=5x-5得到方程4x-5x=-5-2的这一过程,你们能发现什么?
师生共同归纳:
把等式的一边的某项变号后移到另一边,叫作移项(依据是等式性质1).
教师:上面解方程中“移项”起了什么作用?
学生:自由发言
教师:解释“对消”与“还原”就是指“合并同类项”和“移项”
三、巩固练习
应用移项与合并同类项解方程,进一步深化解方程的过程。
例: 解下列方程.
(1)3x+5=4 x+1; (2)9-3y=5y+5 ; .
学生活动设计:找两个学生上黑板板演,在板演后,让学生对以上同学的做法进行评价,寻找问题所在,表达问题产生的原因,找到正确的方式方法.
教师活动设计:引导学生对解方程的过程进行独自体验,进一步感受解方程的过程.
〔解答〕(1)移项,得
3x-4x=1-5,
合并同类项,得
-x=-4,
系数化为1,得
x=4.
〔解答〕(2)移项得,
-3y-5y=5-9,
合并得,
-8y=-4,
系数化为1得,
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号