日期:2022-02-14
这是角平分线的性质第一课时教案,是优秀的数学教案文章,供老师家长们参考学习。
本节课的设计思路是从回顾三角形中的角平分线出发,再通过折纸探索平分一个角,提出遇到不能对折的木板或钢板类角时如何平分的问题,引出角平分仪,进而类比介绍角平分线的作法。对于角的平分线的性质的探究,我是按操作、猜想、验证的学习过程进行,先让学生通过折纸,提出思考问题,鼓励学生思考,作出猜想,然后将它转化为数学问题,让学生围绕着问题而展开验证猜想,从而得出结论。
整节课都以学生为主,自己操作、探究、合作贯穿始终,在教学过程中给学生的思考留下了充足的时间和空间,由学生自己去发现结论,学生在经历“将显示问题转化为数学问题”的过程,从而能对角的平分线的性质有更深刻的认识,同时培养学生动手、合作、概括能力,进而提高学生的思维水平和应用数学知识解决实际问题的意识。
可惜对学生的基础知识和基本能力估计不足,前面探究角的平分线的画法花时过多,造成后面对角的平分线的性质的探究,特别是验证猜想和归纳结论显得过于仓促。
一、理解学生,让教学设计更贴近学生
教学设计时需要理解学生,了解学生的认知起点、认知规律、思维障碍,才能使教学设计更贴近学生,激发学生积极主动进行知识建构。
1、清楚学生已有的数学知识
这一点对于刚刚参加工作4年的我来说,往往是在教学后才能更好地把握的。比如本节的内容,要让学生自己经过探究总结出“角的平分线的性质”,学生们在归纳时能说出“角的平分线上的点,向角两边作垂线段,垂线段的长度相等。”但却不能将垂线段的长度,与点到直线的距离联系在一起,从而在得出性质定理时,出现了一些困难,就是因为我没有充分考虑学生对原有知识的认识,在布置预习作业时没有让学生回忆什么是点到直线的距离。发现这个问题之后,我在2班布置预习作业时,就提起了注意,从而让教学顺利的进行了下去。
在教学过程中,我们首先要做到的就是理解学生,清楚学生学习数学的基础、潜能、需求与差异,清楚学生已有的数学知识、新的知识生长点与潜在的困难,使教学更合理,帮助学生顺利的进行知识建构。如果离开对学生现状的准确把握,教学设计就很难达到理想的效果。
2、理解学生的认知规律
本节课的'目标之一就是:会用尺规作图的方法,画任意角的平分线。如何让学生理解、记住作法,从而掌握画角平分线的方法呢?
我由“平分角的仪器”入手,让学生们自己发现仪器的原理,从中得到启发,画一个角的平分线关键是找到满足条件的三个点,学生能理解到这儿,就能自己找到方法并画出角平分线。也就让学生的`学习处在一种自然生成的状态。新知识的发生、形成、应用,不是教师强加于学生的,是符合他们的认知规律的。
二、理解教材,让教学设计由教材“生长”
本节内容教材在编排时构建了一个完整的探究活动,教学中应让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,动手操作,得出猜想,并进一步进行推理论证,感受结论的合理性,体现数学研究的严谨性。
我在设计性质探究这个环节时,充分的挖掘了教材,一步一步的引导学生深入思考,环环相扣、循序渐进,以问题为载体,逐步要求学生独立分析、形成完整的证明过程,从而训练了学生推理论证的能力。
教材的结构体系、内容顺序是反复考量的,语言是反复斟酌的,例题是反复打磨的,习题是精挑细选的。教学设计时需要理解教材,理解教材内容、编排意图,重视教材的特色栏目,善于将教材内容“生长”开去,教师应深入理解数学知识的本质、结构,进而把知识教“活”,促进学生丰富或调整原有的认知结构,让学生顺利开展数学活动,进行知识建构。
三、理解教学,让教学设计更有效
教学设计时需要理解教学,重视教学过程、教学方式、课堂提问的设计,才能优化学生主动建构知识的过程,使学生学会学习。
1、重视教学活动的设计
本课教学时有一个突出的特点,设计了问题串,教师的提问一定要有针对性、启发性,这些问题环环相扣,循序渐进,让数学定理的归纳过程、命题的发现过程充分“暴露”给学生。
学生在经历观察、猜想、验证、证明的数学活动中,发展合情推理能力,并能有条理、清晰地阐述自己的观点。这正是培养学生数学素养,发展学生能力的有效方式。只有这样,才能让学生在掌握知识的同时,经历一个主动发现问题、提出问题、分析问题、解决问题的完整过程,才能克服教学中只重数学结果的倾向,实现从“被动的接受”到“主动地建构”的转变,让课堂涌动着生命的灵性。
2、重视数学方法的渗透
数学教学不仅要让学生学会知识,更要让学生掌握解决问题的基本方法,这就是大家常说的“授人以鱼,不如授人以渔”。
如本节课的例题,可以用两步全等的方法,也可以结合本节课的新内容,这样就只需证一步全等。让学生体会证明线段等、角等,可以用全等的方法,当然也可以用角平分线的性质,将来还会有别的思路,这样的总结,能帮助学生整理做题思路,不会在解决问题时一脸茫然、无从下手。
教学目标
1.了解角平分线的性质,并运用其解决一些实际问题。
2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。
教材分析
重点:角平分线性质的探索。
难点:角平分线性质的应用。
教学方法:
预学----探究----精导----提升
教学过程
一创设问题情境,预学角平分线的性质
阅读课本P128-P129,并完成预学检测。
二合作探究
如图,OC为∠AOB的角平分线,P为OC上任意一点。
提问:
1.如何画出∠AOB的平分线?
2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?
让学生活动起来,通过测量,比较,得出结论。
教师鼓励学生大胆猜测,肯定它们的'发现。
归纳:角平分线上任意一点到角两边的距离相等。
三想一想,巩固角平分线的性质
三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?
三做一做,拓展课题
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
让学生充分讨论,鼓励学生自主完成。
教师归纳:
因为射线AP是△ABC的外角∠CAE平分线,
所以PD=PE(角平分线上的点到角两边的距离相等)
所以PB+PD=PB+PE
又PB+PE>BE(三角形两边之和大于第三边)
所以PB+PD>BE
思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?
四课堂练习
课本P130练习
五小结
本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。
六作业
1.课本P130习题A组T1,T2
2.基础训练同步练习。
3.选作拓展题。
七课后反思:
新旧教法对比:新教法更有利于培养学生合作学习的能力。
学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。
学案
学习目标:
1了解角平分线的性质。
2并运用角平分线的性质解决一些实际问题。
预学检测:
1角平分线上任意一点到 相等。
2⑴如图,已知∠1=∠2,DE⊥AB,
DF⊥AC,垂足分别为E、F,则DE____DF.
⑵已知DE⊥AB,DF⊥AC,垂足分别
为E、F,且DE=DF,则∠1_____∠2.
学点训练:
1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()
A.PC=PDB.OC=OD
C.∠CPO=∠DPOD.OC=PC
2.如图,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分线,DE⊥AB于E,
若AC=10cm,则△DBE的周长等于()
A.10cmB.8cmC.6cmD.9cm
巩固练习:
已知:如图,在△ABC中,∠A=90°,AB=AC,
BD平分∠ABC.求证:BC=AB+AD
拓展提升:
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
本节课采用“回顾与思考—探究与发现—理解与运用—巩固与提高—收获与感悟”等五步教学为基本流程的课堂教学模式,通过实践,有如下几点体会:
一、重视学生动手操作,让学生经历探究求知过程。目的是引导学生积极成为学习的主体,自觉参与课堂,积极投入到探索过程中,教学中引导同学们要学会用大脑去思考,用耳朵去倾听,用眼睛去观察,用双手去操作,使学生言语与行动逐步起到自觉调控的作用,促进思维的“内化”,从而发展学生的独立思考能力。
二、课堂上有效利用多媒体辅助教学,增加了课堂教学效益。在学生通过动手实践、猜想、概括等活动后,用课件展示给学生,缩短了课堂教学时间,也为提高课堂教学效率提供了帮助。
三、注重对学生数学课堂学习过程的评价,尽可能做到充分理解和尊重学生的发言。对正确的发言给予真诚的肯定,对于学生发表的不对的意见有意进行冷处理,创造机会让学生去争论。学生能够在课堂上敢说、敢议、敢评。
不足之处:由于本节课内容并不复杂,而且很难设计一些有创意的应用新知识解决的问题,所以,没有做到切实培养学生的逻辑推理能力和灵活运用知识解决问题的能力。另外,教学语言不精练,有的话重复了好几遍,过多的点拨剥夺了学生的思维参与机会;课堂提问质量不高,有的问题设问没有必要。在习题的处理上,教师的指导没有起到正确的导向作用。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号