日期:2021-05-13
这是同底数幂的除法教学,是优秀的数学教案文章,供老师家长们参考学习。
学习目标:
明确零指数幂、负整数指数幂的意义,并能与幂的运算法则一起进行运算.
学习重点:
公式a0=1,a-n= (a0,n为正整数)规定的合理性.
学习难点:
零指数幂、负整数指数幂的意义的理解.
学习过程:
【预习交流】
1.预习课本P48到P49,有哪些疑惑?
2.计算:8n4n2n(n是正整数)= .
3.已知n是正整数,且83n162n=4.则n的值= .
4.若3m=a,3n=b,用a,b表示3m+n,3m-n.
5.已知:2x 5y=4,求4x32y的值.
【点评释疑】
1.课本P48做一做、想一想.
a0=1(a0)
任何不等于0的数的0次幂等于1.
2.课本P48议一议.
a-n= (a0,n是正整数)
任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的.倒数.
3.课本P49例2.
4.应用探究
(1)计算:①( )-2 ②( )-3 ③(-a)6(-a)-1
(2)计算:① ② -
(3)如果等式 ,则 的值为 .
(4)要使(x-1)0-(x+1)-2有意义,x的取值范围是 .
5.巩固练习:课本P49练习1、2、3.
【达标检测】
1.若(x+2)0无意义,则x取值范围是 .
2.( ) -p= .
3.用小数表示 .
4.计算: 的结果是 .
5.如果 , ,那么 三数的大小为( )
A. B. C. D.
6.计算 的结果是 ( )A.1 B.-1 C.3 D.
7.下列各式计算正确的是 ( )
(A) .(B) (C) (D)
8.下列计算正确的是 ( )
A. B. C. D.
9.︱x︱﹦(x-1)0,则x= .
10.若 , , , ,则( )
11.计算:(1)4-(-2)-2-32(-3)0 (2)4-(-2)-2-32(3.14-)0
(3) (4) +(-3)0+0.2200352004
【总结评价】
零指数幂公式a0=1(a0),负整数指数幂公式a-n= (a0,n是正整数),理解公式规定的合理性,并能与幂的运算法则一起进行运算.
【课后作业】
课本P50到P51习题8.3 3、4、5.
一、教学目标
1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.
2.培养学生抽象的数学思维能力.
3.通过例题和习题,训练学生综合解题的能力和计算能力.
4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.
二、重点·难点
1.重点
理解和应用负整数指数幂的性质.
2.难点
理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.
三、教学过程
1.创造情境、复习导入
(l)幂的运算性质是什么?请用式子表示.
(2)用科学记数法表示:①69600②-5746
(3)计算:①
②
③
2.导向深入,揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1.
同底数幂扫除,若被除式的指数小于除式的指数,
例如:
可仿照同底数幂的除法性质来计算,得
由此我们规定
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.
3.尝试反馈.理解新知
例1计算:(1)
(2)
(3)
(4)
解:(1)原式
(2)原式
(3)原式
(4)原式
例2用小数表示下列各数:(1)
(2)
解:(1)
(2)
练习:P 141 1,2.
例3把100、1、0.1、0.01、0.0001写成10的幂的形式.
由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的`指数的绝对值.
问:把0.000007写成只有一个整数位的数与10的幂的积的形式.
解:
像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.
例4用科学记数法表示下列各数:
0.008、0.000016、0.0000000125
解:
例5地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)
解:
(吨)
答:木星的质量约是
吨.
练习:P142 1,2.
四总结、扩展
1.负整数指数幂的性质:
2.用科学记数法表示数的规律:
(1)绝对值较大的数
,n是非负整数,n=原数的整数部分位数减1.
(2)绝对值较小的数
,n为一个负整数,
原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)
五、布置作业
P143 A组4,5,6;B组1,2,3,4.
参考答案
略.
今天的内容就介绍到这里了。
本节课与同底数幂的乘法一样,同底数幂的除法的性质的导出也是一个由特殊到一般的过程,运用探究的方法让学生主动的参与到性质的发现中来,有利于提高学生对知识的认可度和加深他们的`印象。归纳得出性质后要特别注意性质中的一些条件,尤其是要让学生知道,底数a是不等于0的,这是因为若a=0,则除数为0,除法就没有意义了。另外这里不讲零指数和负指数的概念,所以性质中必须规定m,n都是正整数,并且m>n,这些条件都应让学生在运用时予以注意。在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆。乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同。底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题。
由于这里不讲零指数,负指数的概念,所以在性质中加上了指数m,n都是正整数,并且m>n的条件,但是在除法运算中还是会遇到对于此种情况还可以多举例子,或者让学生自己举例自己计算从而得出=1,进而将这个结论推广。
在解决同底数幂的除法的问题时,应该注意分清楚底数,指数,然后按照性质进行计算。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号