当前位置:首页 > 教案教学设计 > 数学教案

数轴的教学设计

日期:2021-05-30

这是数轴的教学设计,是优秀的数学教案文章,供老师家长们参考学习。

数轴的教学设计

数轴的教学设计第1篇

  一、回顾复习旧知

  1、读数,指出哪些是正数,哪些是负数?

  -62.9 +0.16 -4/5 +7/120 +305 -88

  二、新课讲授

  1、教学例3。

  (1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?

  组织学生在小组中议一议,然后汇报。

  (2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

  (3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (4)教师总结:

  我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

  2、观察数轴,比较数的.大小。

  引导学生观察数轴。

  ①从0起往右依次是?从0起往左依次是?你发现什么规律?

  ②在数轴上分别找到

  1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  师及时小结:

  数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

  三、巩固练习

  1、完成教材第5页的“做一做”。

  学生独立练习,指名汇报。

  2、完成教材第6页练习一的第4、5题。

  组织学生独立完成,并在小组中相互交流、检查。

  四、课堂小结

  通过这节课的学习,你有什么收获?

数轴的教学设计第2篇

知识与能力

通过与温度计的对比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比较有理数的大小。

过程与方法

合理利用新旧知识的迁移,借助形(数轴)来理解数,经历从实际(温度计)中抽出数学模型(数轴),从数形结合两个侧面理解问题,并有选择处理数学信息,作出大胆猜测。

情感态度

与价值观

体会数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣;能够在师评、生评、自评的影响下,树立学习数学的自信心。

重点

和难点

重点

会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

难点

利用数轴比较有理数的大小。

课前

准备

小黑板准备有关题目

教 学 过 程 设 计

教 师 活 动

学 生 活 动

说 明

一、引入新课

1、师:大家学过数轴吗?

若有学生产生疑问,则出示小黑板题目:

用直线上的点表示下列各数:

0、2、 、1.5

(在数轴上标出0、1、2、3)

2、师:学上节课的时候,“数不够用了”,就出现了谁?

若生只答负数,后面教学“任何一个有理数都可以用数轴上的一个点来表示”时则通过有理数的“正数、0、负数”分类来帮助学生理解。

若生答有理数,则引导回忆有理数的“整数、分数”分类,再举相应的数例,后面将这些数在数轴上表示,以帮助学生理解。

评价学生表现,激发学生学习兴趣,转入下一环节。

二、新授:

1、学画数轴。

让学生举生活中负数的例子。

出示温度计的局部放大图(小黑板),让生读出其读数。

(温度计的读数绝对值不宜过大,便于作图时确定单位长度,本课中的数轴尽量使单位长度确定为1。)

师:想不想将它们也在数轴上表示呢?

师示范画数轴。

板书时,隐含强调数轴的三要素,在标注负数时,方法有二:一是与温度计比较;二是观察距离原点正(反)方向几个单位长度。

强调:负数从0向左写起。

2、用数轴上的点表示有理数。

师:请将小黑板上的温度计读数在数轴上表示出来。

教师口述例1。

师:将有理数分类时的例数在数轴上表示出来。

师:是不是每一个有理数都用数轴上的点表示?

板书“任何一个有理数都可以用数轴上的一个点来表示”

出示例2,指名板演。

3、相反数。

师:观察–2和2有什么相同点和不同点。

师引导学生从两方面考虑:①数的表现形式;②数轴上的位置。

师小结,给出“相反数”的概念,强调“互为相反数”。

师:再举几组例子。

师生找朋友:师口述一数,生答其相反数。

师:相反数还有什么特点?再议一议。

师:有人不愿意了,“你们都有朋友,我好孤单!”是谁孤单?(师可提示谁不说正负)

特别地:0的相反数就为0吧。

4、通过数轴比较有理数的大小。

由生活中温度由–5℃、

–2℃、0℃、2℃的变化,结合小黑板温度计图,引导学生。

师:数轴上越往哪边数值越大?(侧放小黑板,温度计真像数轴)越往哪边数值越小?

师:试从数轴上指出两个数,比较它们的大小。

思考:正数与0、负数与0、正数与负数的大小关系。

出示例3,指名板演,讲评。

补充:﹣5<( )

﹣5 >( )

﹣3<( )< 3

三、练习:

教科书第39页“随堂练习”内容。引导,讲评。、

四、课堂总结,评价。

师生总结本课内容。

师:你感到自己今天的表现怎样?

五、作业。

生思考,作答。

指名完成题目。

生思维活跃:数轴原来已学过,忆旧知,完成题目。

生:负数。

生:还学习了有理数。

生接受评价,增强学习的主动性。

生:……、温度计、……

生读出读数。

生:想。

生积极动手,认真作图,同步完成。

指名板演。

侧放小黑板,师生订正。

生口答。

指名板演。

生试举例,并表示。

若学生举的数的绝对值偏大,可让学生口述在原点的哪边多少个单位长度处描点。

生板演。同桌互查互评、自评。

查评:1、画图部分。2、数的表示部分。

同桌小议,交换看法。

生:①书写只是符号不同;②位于原点两侧;③距原点的距离相等。

生踊跃回答。

成对出现,一正一负。

生思考后答:0

生结合生活经验,思考后得出温度逐渐上升。得出结论温度计上的温度值越往上,表示温度越高

生很容易作答。

思考后作答,举例,并说出自己是怎么想的。

生板演,完成例3。

同桌讨论,推荐代表发言,师生共同分析其数据分布。

生思考,作答。

师生对话,总结,评价。

抛出“数轴”,给出悬念,随之用小学六年级学过的“用直线上的点表示数”释疑,一紧一松,即吸引了学生的注意力,也激起了学生学习兴趣,建立数轴的初步印象。

复习上节有理数分类,为有理数在数轴上用点表示做准备。

考虑到了学生的回答及后续教学有关内容的处理,即怎样帮助学生更好地理解“任何一个有理数都可以用数轴上的一个点来表示”,根据的是有理数的分类:

1、有理数{正数、0、负数}

2、有理数{整数(正整数、0、负整数)、分数(正分数、负分数)}

课堂阶段性评价,既是对前一环节学生表现的总结,也为下一环节学生的积极参与教学做了铺垫。

温度计在本课中是一个非常重要的道具。请出学生学习的帮手。实际的温度计有大格小格,采用局部放大,提供给学生的是每个小格,刚好是1℃。而将小黑板倾斜,更像数轴,还可略去实物温度计上下有限可能对学生的.误导。

由温度计的温度值引入,而不是直接问“负数在数轴上怎么表示”,是便于后面教学在数轴上表示负数和有理数的大小比较时,更便于学生理解(温度计平放即可判定相应的点是否画正确。)

手把手传授画法,没有将作图步骤中的直线与三要素并列,便于突出三要素,但也要注意“直线”也是学生作图时容易出错之处(按线段对待,平均分成若干份)。

教学时先原点,再单位长度(本节每个单位长度表示1,暂不写,因为还没有正方向),指出正方向,最后根据单位长度及正方向标注有关点。

所涉及的数据难度不大,学生兴致高涨。

生举例的数值或教师提供数值如

–,注意是平均分3份后,从0向左取2份处描点。

通过“有理数的所有子类都可以用数轴上的点表示”来证明。

第二次课堂阶段性评价:互查互评、自评。

①从书写出的“形”或读法入手。②③从数轴上观察。学生积极参与讨论,交流中获取知识。创造条件使喜“静”的学生也“动”起来。

也可通过数轴上观察,原点左有一个有理数,必然在原点右侧有它的一个相反数,而0充当了服务角色,突出0的特殊。

师举此例,也隐含着这几个数的大小关系。特别是–5 <–2。学生比较有理数的大小,也可从此方面考虑。

多次与温度计做比较,让学生体会数学与现实生活的联系。

多次让学生板演,给学生提供上讲台的机会,调动学生的积极性。

渗透了集合概念,更明确了数轴上数的大小关系与左右方向的联系。

通过对话评价,找出学生理解掌握本课还有什么问题,促进教师改进,同时,使学生一定程度地了解自己课堂学习的不足,明确改进方向,增强学生学习数学的自信心。

板书设计: 数 轴

–2 2

数轴(直线) 小 ←——→ 大 相反数 互为相反数

(有理数 1、原点 (此处是教师示范的数轴) 0的相反数是0

的分类) 2、单位长度 正数>0

3、正方向 任何一个……来表示。 负数<0

正数>负数

(例2学生板演区) ﹣5<( ) ﹣5>( )

﹣3<( )< 3

(例3学生板演区)

教学反思:

1、有关有理数的分类,“分数”已不同于小学阶段“分数”的内涵,而是将部分小数已纳入其中,在此(或第一课时)学生有疑问,教师只略讲,而是到学习无理数时再详解。

2、要求学生画数轴,怎样确定原点的位置?怎样确定单位长度?在数轴上画出几个单位长度?这些都与有理数的绝对值有关,要根据具体情况而定,学生在本节掌握时还存在疑问。

3、关于数轴上有理数之间的位置关系,练习不够,可设计游戏:指定若干名学生站成一排,间距相同,每位学生表示数轴上的若干个点,教师任意指定某学生为原点,其余学生说出自己所表示的有理数;较高一个层次,指定某学生为非原点的一个有理数。培养学生对数轴的正方向感。

4、对利用数轴将几个有理数排序练习不够。

数轴的教学设计第3篇

  一、教学目标

  【知识与技能】

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  【过程与方法】

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  【情感、态度与价值观】

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  【教学重点】

  数轴的三要素,用数轴上的点表示有理数。

  【教学难点】

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点A,B,C,D,E表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号