当前位置:首页 > 教案教学设计 > 数学教案

多边形的内角和教学设计人教版

日期:2021-05-31

这是多边形的内角和教学设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

多边形的内角和教学设计人教版

多边形的内角和教学设计人教版第1篇

  教学目标

  知识与技能

  掌握多边形内角和公式及外角和定理,并能应用.

  过程与方法

  1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;

  2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.

  情感态度价值观

  通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.

  重点

  多种方法探索多边形内角和公式

  难点

  多边形内角和公式的推导

  教学流程安排

  活动流程

  活动内容和目的

  活动1学生自主探索四边形内角和

  活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法

  活动3探索n边形内角和公式

  活动4师生共同研究递推法确定n边形内角和公式

  活动5多边形内角和公式的应用

  活动6小结

  作业

  从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.

  加深对转化思想方法的理解, 训练发散思维、培养创新能力.

  通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.

  学生提高动手实操能力、突破“添”的思维局限

  综合运用新旧知识解决问题.

  回顾本节内容,培养学生的归纳概括能力.

  反思总结,巩固提高.

  课前准备

  教具

  学具

  补充材料

  教师用三角尺

  剪刀

  复印材料

  三角形纸片

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1、2]

  问题1.三角形的内角和是多少?

  与形状有关吗?

  问题2.正方形、长方形的内角和是多少?

  由此你能猜想任意凸四边形内角和吗?

  动脑筋、想办法,说明你的猜想是正确的.

  问题3添加辅助线的目的是什么,方法有没有什么规律呢?

  学生回答:

  三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.

  学生先独立探究,再小组交流讨论.

  教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.

  学生汇报结果.

  ①过一个顶点画对角线1条,得到2个三角

  形,内角和为2×180°;

  ②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;

  ③若在四边形内部任取一点,如图,也可以得到相应的结论;

  ④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)

  内角和为3×180°-180°;

  ⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;

  教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.

  教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.

  通过回忆三角形的内角和,有助于后续问题的解决.

  从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.

  通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.

  通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.

  [活动3]

  问题4怎样求n边形的内角和?(n是大于等于3的整数)

  学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.

  特点:内角和都是180°的整数倍.

  通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.

  [活动4]

  每名同学发一张三角形纸片

  问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发

  《多边形的内角和》公开课生了怎样的变化

  问题6由四边形得到五边形呢?

  依此类推能否猜想n边形内角和公式

  将三角形去掉一个角可以得到四边形,如图7,四边形内角和为

  180°+2×180°-180°=2×180°.

  每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°

  (严谨的证明应在学习数学归纳法后)

  学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决

  [活动5]

  知道了凸多边形的内角和,它可以解决哪些问题呢?

  问题6:六边形的外角和等于多少?

  n边形外角和是多少?

  学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到

  6×180°-(6-2)×180°=360°

  学生思考,回答.

  n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.

  利用内角和求外角和,巩固了内角和公式.

  如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维

  练习

  一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .

  练习.解:(n-2)180=150n,n=12;

  或360÷(180-150)=12(利用外角和)

  150°×12=1800°.

  巩固内角和公式,外角和定理.

  [活动5]

  小结

  下面请同学们总结一下这节课你有哪些收获.

  学生自己小结,老师再总结.

  1. 多边形内角和公式(n-2)180°,外角和是360°;

  2. 由特殊到一般的数学方法、转化思想.

  学会总结,培养归纳概括能力.

  作业:

  课后思考题.

  一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?

  当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?

  多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.

  作业:

  解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

  x=(n-2)180-1125

  ∵0

  ∴0<(n-2)180-1125<180

  解得:

  ∵n是整数,

  ∴n=9.

  x=(9-2)180-1125=135

  注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?

  解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

  ∵n是整数,

  ∴45+x是180的倍数.

  又∵0

  ∴45+x=180,x=135,n=9

  还可以根据内角和的特点,先求出内角和.

  解法3.设此多边形的内角和为x°,依题意:1125

  即:180×6+45

  ∵x是多边形内角和的度数

  ∴x是180的倍数

  ∴x=180×7=1260 边数=7+2=9,

  这个内角=1260°-1125°=135°

  解法4(极值法).设这是n边形,这个内角为x°,则0

  令x=0,得:n=,令x=180,得:n=

  ∴

多边形的内角和教学设计人教版第2篇

  一、内容和内容解析《多边形的内角和》优秀教学设计

  1.内容

  多边形的内角和.

  2.内容解析

  本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.

  教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360°如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.

  本节课的教学重点是:多边形的内角和与多边形的外角和公式.

  二、目标和目标解析

  1. 教学目标

  (1)了解多边形的内角、外角等概念.

  (2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.

  2. 教学目标解析

  (1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.

  (2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.

  三、教学问题诊断分析

  对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×180°,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.

  本节课的教学难点:多边形的内角和定理的推导.

  四、教学过程设计

  1.复习导入

  我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?

  2.多边形的内角和

  如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

  可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.

  类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?

  观察下面的图形,填空:

  五边形 六边形

  从五边形一个顶点出发可以引 条对角线,它们将五边形分成 个三角形,五边形的内角和等于 ;

  从六边形一个顶点出发可以引 条对角线,它们将六边形分成 个三角形,六边形的内角和等于 ;

  从n边形一个顶点出发,可以引 条对角线,它们将n边形分成 个三角形,n边形的内角和等于 .

  n边形的内角和等于(n-2)·180°

  从上面的.讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?

  分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.

  ∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.

  图1 图2

  分法二: 如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.

  ∴五边形的内角和为(5-1)×180°-180°=(5-2)×180°=540°.

  如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°.

  3.例题

  例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?

  如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.

  分析:∠A、∠B、∠C、∠D有什么关系?

  解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°

  又∠A+∠C=180°

  ∴∠B+∠D= 360°-(∠A+∠C)=180°

  这就是说,如果四边形一组对角互补,那么另一组对角也互补.

  例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

  如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.

  分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?

  解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BCD=180°

  ∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°

  ∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA

  =6×180°

  又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°

  ∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°

  这就是说,六边形形的外角和为360°.

  如果把六边形换成n边形可以得到同样的结果:

  n边形的外角和等于360°.

  对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

  4.课堂练习

  课本24页练习1、2、3题.

  5.课堂小结

  n边形的内角和是多少度?

  n边形的外角和是多少度?

  6.布置作业:

  教科书习题11.3第1,3,5,7,10题.

  五、目标检测设计

  1.十边形的内角和为( ).

  A.1 260° B.1 440°

  C.1 620° D.1 800°

  【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.

  2.一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.

  【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.

  3.一个多边形的内角和等于1 440°,则它的边数为__________.

  【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.

  4. 如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).

  A.140° B.40°

  C.260° D.不能确定

  【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.

多边形的内角和教学设计人教版第3篇

教学建议

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的`问题要转化为简单的、已知的问题。

教学目标 :

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点 :

四边形的概念

教学过程 :

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

(2)

.

练习:

1.课本124页3题.

2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业 : 课本130页 2、3、4题.

数学教案-多边形的内角和

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号