当前位置:首页 > 教案教学设计 > 教学设计一等奖

人教版圆的面积教案一等奖

日期:2022-06-16

这是人教版圆的面积教案一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

人教版圆的面积教案一等奖

人教版圆的面积教案一等奖第 1 篇

教学内容

  教材33页、34页例1、例2、例3及做一做,练习七第2-5题。

  素质教育目标

  (一)知识教学点

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力训练点

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学步骤

  一、铺垫孕伏

  1.口答下列各题(只列式不计算)。

  (1)圆的半径是5厘米,周长是多少?面积是多少?

  (2)圆的直径是3分米,周长是多少?面积是多少?

  2.长方形的面积计算公式是什么?

  3.教师出示圆柱体模型,指同学说出它有什么特征?

  二、探究新知

  1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

  (1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

  (2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

  2.教学例1

  (1)出示例1,指同学读题,找出已知条件和所求问题。

  学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

  板书:3.14×0.5×1.8

  =1.75×1.8

  ≈2.83(平方米)

  答:它的侧面积约是2.83平方米。

  (2)反馈练习:完成做一做41页第1题。

  学生独立解答,然后订正。

  3.教学圆柱的表面积

  (1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

  (2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

  4.教学例2

  (1)投影片出示例题2、圆柱的几何图形和表面积的展图。

  (2)指同学读题,找出已知条件和所求问题。

  (3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

  (4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

  教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

  做完后订正,订正时让学生说出有关的计算公式。

  (5)反馈练习:完成做一做第2题。

  指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

  5.教学例3

  (1)出示例3,指名读题,找出已知条件和所求问题。

  (2)教师提示:解答这道题应注意什么?

  启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

  (3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

  (4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

  (5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

  (6)“四舍五入”法与“进一法”有什么不同。

  通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

  6.阅读课本33页、34页。

  三、巩固发展

  1.完成练习七第2题。

  指两名学生板演,教师巡视指导,然后订正。

  2.完成练习七第3题的前两题。

  学生在练习本上做,教师巡视指导,然后订正。

  3.完成练习七第5题。

  (1)每组一个茶叶筒,学生分组进行测量。

  (2)教师巡视,指导学生测量的方法。

  (3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。

  四、全课小结

  教师:这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?

  教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

  五、布置作业练习七第3题的第3小题、第4题。

  课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。

人教版圆的面积教案一等奖第 2 篇

教学目标

  1.经历认识圆柱展开图和探索表面积计算方法的过程。

  2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

  3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

  教学重点

  圆柱体表面积公式的推导。

  教学难点

  运用表面积公式计算实际图形的表面积。

  教具准备

  圆柱表面展开示意图。

  教学过程

  一、读题导入

  1.齐读课题。

  师:看到这个课题,你们想到了哪些与之相关的知识。

  生:长方体和正方体的表面积;圆柱的底面和侧面。

  2.复习相关知识

  (1)什么是长方体、正方体的表面积?它们是怎么计算的?

  二、探索新知

  1.课件出示圆柱,揭示圆柱的表面积公式

  师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。

  生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。

  2.教学圆柱的表面积

  (1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。

  (2)谁还记得圆柱侧面积的计算公式。

  学生:圆柱的侧面积=底面周长高

  (3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。

  (4)议一议:怎样求圆柱的表面积?学生讨论。

  学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。

  (4)教学例题:

  出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。

  (5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。

  三、练习

  试一试

  (1)提出试一试的问题,让学生尝试计算。

  (2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。

  四、巩固

  练一练1:则由学生独立完成。

  练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。

  练一练3:先指导学生明确解决问题的思路,再自主解答。

  五、家庭作业

  自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。

人教版圆的面积教案一等奖第 3 篇

教学内容:

  圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  学情分析:

  本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

  学法指导:

  教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

  教具准备:

  多媒体课件,圆片。

  学具准备:

  把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的`面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr × r S=πr2 师小结公式

  S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第95页做一做的第1题。

  (4)看书质疑。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示

  用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  1. 第97页的第3题和第4题。

  2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

  板书设计:

  圆的面积

  长方形的面积= 长× 宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

人教版圆的面积教案一等奖第 4 篇

教学目标

  1.经历灵活运用知识自主解决实际问题的过程。

  2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。

  3.体验数学在日常生活中的广泛应用,培养应用意识。

  教学重点

  运用圆柱表面积公式计算水桶的表面积。

  教学难点

  注意水桶的表面积只有一个底面积。

  教学过程

  一、新授

  观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。

  师:读题之后,你有什么想对同学们说的?

  生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

  多人板演,一人说想法。

  水桶的侧面积:3.143035=3297(平方厘米)

  水桶的底面积:3.14(302)2

  =3.14152

  =3.14225

  =706.5(平方厘米)

  需要铁皮:3297+706.5=4003.5(平方厘米)

  答:做这个水桶要用4003.5平方厘米。

  二、尝试:试一试

  1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。

  注意水桶底面直径和高都是20厘米,怎样在图上画出来。

  有的学生可能会说运用比例尺,老师要加以表扬。

  2)交流学生画图的过程和结果。

  三、巩固:练一练

  1.先让学生独立完成,再交流。

  选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。

  2.读题,使学生了解木墩的底面不漆。

  3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。

  四、课堂小结

  这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?

  归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

  五、家庭作业

  (一)求出下面各圆柱的侧面积。

  1.底面周长是1.6米,高是0.7米。

  2.底面半径是3.2分米,高是5分米。

  (二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

  (三)练一练第3小题。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号