当前位置:首页 > 教案教学设计 > 教学设计一等奖

三年级植树问题说课稿一等奖

日期:2022-05-16

这是三年级植树问题说课稿一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

三年级植树问题说课稿一等奖

三年级植树问题说课稿一等奖第 1 篇

 教学内容:

  义务教育课程标准实验科书(人教版)四年级下册第117--118页例题及相关练习。

  教学目标:

  知识性目标:

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。

  能力目标:

  1、让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。

  2、渗透数形结合的思想,培养学生借助实物,图形解决问题的意识。

  情感目标:

  培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。

  教学重点:

  引导学生发现植树与间隔数的关系。

  教学重点:

  理解间隔与发现植树棵数的规律并运用规律解决问题。

  教学准备:

  课件、学生用尺子、纸等。

  教学过程:

  一、导入新课

  1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。

  2、揭示课题:

  明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)

  二、新授。

  1、出示准备题:

  同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?

  100÷5=20(段)

  2、出示例题

  同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  (1)读题分析理解:“一边植树,两端要栽”的意义。

  可能许多同学列成:100÷5=20(棵)

  (2)学生试做。

  让学生讨论。

  3、感知间隔的含义

  请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?

  4、学生依次画图,课件依次演示画图过程的算法。

  段数棵数

  12

  23

  34

  56

  通过上面的分析,你发现了什么?

  棵数=段数+1

  或:段数=棵数-1

  5、完成例题。A:先要求出段数:100÷5=20(段)

  B:再次求出棵数:20+1=21(棵)

  6、再次感知,找到规律

  课件上做习题栽了8棵树,有()个间隔。(两端都要栽)

  有20个间隔,栽了()棵树(两端都要栽)

  三、尝试练习,做一做

  课件:1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  2、做书上的练习P122(练习二十)。T1、T2写在书上。

  四、巩固加深,拓展。

  1、打开书P117读书,思考。

  2、你在这一节课有什么遗憾?

  3、你在这节课中有什么收获?

  4、联系生活举例,加深理解。

  五、总结延伸

  植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。

  板书设计:

  段数棵数学生练习板演

  12

  23

  34

  45

  规律:棵数=段数+1

  或:段数=棵数-1

三年级植树问题说课稿一等奖第 2 篇

教学内容:

  人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200+2=202(棵)

  方法三:1000÷5=200(棵)200+1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去......

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200+1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数-1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4-1=3(次)

  问:为什么要-1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

三年级植树问题说课稿一等奖第 3 篇

教学内容:

  人教版义务教育课程标准实验教材四年级(下册)第117---118页例1

  教学目标:

  1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学过程:

  1、课前谈话:

  今天来这里上课,有什么不同的感觉?

  老师挺高兴的,这么多人,正好做一个公益宣传,请看--

  春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

  一、创设情境,出示问题(2分钟)

  1、揭示课题(2分钟)

  师:你们觉得种树与数学有联系吗?

  生:间隔,米数等等问题。

  师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

  2、出示问题

  课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

  二、化繁为简,解决问题(26分钟)

  1、理解信息(2分钟)

  师:能看懂吗?告诉我们哪些信息?

  生:全长100米,每隔5米等等

  师:每隔5米是什么意思?

  生:就是两棵树之间的“间隔”;

  师:“间隔”这个词听过吗?能举几个例子吗?

  比如同学之间,手指之间......都可以看作是间隔。

  师:两端要种什么意思?

  生:头和尾各要种一棵。

  2、形成猜想(1分钟)

  师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

  生1:200

  生2:201

  生3:202

  师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

  生:验证。

  3、化繁为简(4分钟)

  师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

  师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米

  师:才种了35米,一共要种多少米?

  生:1000米。

  师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

  生:太累了,太麻烦了,太浪费时间了。

  师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

  生:想

  师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

  3、举例验证(5分钟)

  师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。

  师:你认为取多少长的路,画图种树,比较好验证呢。

  生:5米,10米,15米,20米,25米。

  师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

  师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

  4、反馈交流(如何操作还是一个问题)(5分钟)

  请一个小组把自己的研究成果展示在黑板上。

  师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。

  师生互动

  师:这空在这里是怎么回事?

  生:间隔5米;

  师:为什么是空了4个间隔?

  生:20米里正好有4个5米;

  师:怎么算出来的?

  生:20除以5等于4

  师:4个间隔数,空了4次

  师:这样种(板书:两端种),可以吗?)

  5、揭示规律(0.5分)

  师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

  6、解决问题(3分钟)

  师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

  师:(指着猜想答案)当时你是怎么猜想到200棵的。

  师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

  7、巩固练习(6分)

  (1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远

  (2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  三、再度猜想,打通联系(10)

  1、过渡设疑

  2、形成猜想

  3、验证猜想

  4、得出结论

  5、打通联系

  四、拓展选择,辨别类型(3分钟)

  师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

  (1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

  1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

  (2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?

  1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

  (3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?

  1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

  五、丰富背景,遗留问题。(1.5分钟)

  师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

三年级植树问题说课稿一等奖第 4 篇

  教学内容:

  义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:

  用解决植树问题的方法解决实际问题。

  教学难点:

  栽树的棵数与间隔数之间的关系。

  教具准备:

  多媒体。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有很多类似的问题:例如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔五米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有十米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你可以找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号