当前位置:首页 > 教案教学设计 > 教学设计一等奖

圆环的面积一等奖教学设计

日期:2022-04-01

这是圆环的面积一等奖教学设计,是优秀的教学设计一等奖文章,供老师家长们参考学习。

圆环的面积一等奖教学设计

圆环的面积一等奖教学设计第 1 篇

 教学目标:

  1、通过题组练习,进一步掌握圆环面积的计算方法。

  2、通过题组练习,进一步理解在计算圆环面积时的解题策略。

  3、通过题组练习,培养分析、对比、概括能力。

  教学重点:通过题组练习,培养分析、对比、概括能力。

  教学难点:通过题组练习,进一步理解在计算圆环面积时的解题策略。

  教学过程:

  一、复习回顾,引入拓展练习。

  1、师:上一节课,我们学习了有关圆环面积的计算,你还记得计算公式吗?

  2、师:今天我们将在圆环面积计算的基础上,作进一步的学习。

  二、拓展练习教学

  (一)练习1的教学。

  1、出示题目:在一个半径是4米的圆形花坛四周修一条宽1米的小路,小路的.面积是多少平方米?

  2、师:请你认真审题后思考以下3个问题:

  (1)求小路的面积就是求什么图形的面积?

  (2)题中给了我哪些相关的信息?

  (3)我的解题策略是……?

  3、师:你想好了吗?你的解题策略是否和老师的一样?现在就让我们一起按照我们共同制定的解题策略来求出这条小路的面积吧!

  4、师:同学们,你们算出小路的面积了吗?

  5、师:从这道练习题,我们知道了,当已知内圆半径和环宽,求圆环面积时,我们可以先用“内圆半径+环宽”求出外圆半径,然后根据圆环面积的计算公式,求出圆环的面积。

  但如果题目已知的是内圆直径和环宽,要求圆环面积,那又应该如何解答呢?我们一起看看练习2。

  (二)练习2的教学。

  1、出示题目:在一个直径是4米的圆形花坛四周修一条宽1米的小路,小路的面积是多少平方米?

  2、师:根据题意,老师选择了3个同学的不同解法,请你仔细地观察他们的方法,看看谁对谁错。

  3、呈现3种方法:

  A. 外圆直径:4+1=5m

  内圆半径:4÷2=2m

  外圆半径:5÷2=2.5m

  圆环面积:π×(2.5×2.5-2×2)

  =π×2.25

  =7.065m2

  B. 外圆直径:4+1+1=6m

  内圆半径:4÷2=2m

  外圆半径:6÷2=3m

  圆环面积:π×(3×3-2×2)

  =π×5

  =15.7m2

  C. 内圆半径:4÷2=2m

  外圆半径:2+1=3m

  圆环面积:π×(3×3-2×2)

  =π×5

  =15.7m2

  4、师:同学们都判断好了吗?其实B、C两位同学的方法都是正确的,在这两种方法中,你认为哪种更简洁呢?那以后解决这一类型的题目时,我们就按C同学的策略来解题吧!

  (三)题组对比教学。

  1、师:最后让我们观察和比较一下,今天我们完成的两道练习题,看看它们的题目有什么共同点?(出示:两道题目都是已知环宽,求圆环面积。)

  那它们的解题策略又有什么相同点呢?(出示:都是先用“内圆半径+环宽”求出外圆半径,然后再根据圆环面积的计算公式,求出圆环的面积。)

  2、师:看来,以后我们在已知环宽,求圆环面积时,还是得先求出内、外圆的半径,再作进一步的解答。

圆环的面积一等奖教学设计第 2 篇

 学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环 的本质问题。

  根据以前的经验,也总是通过实例 ,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,。概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环, 通过观察或量一量圆 环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆,第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操 作也有课件濱示,还有练习, 非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。 也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。

  学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、 “环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

  通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

圆环的面积一等奖教学设计第 3 篇

 本节课的学习目标是认识圆环,掌握圆环面积的计算方法;利用圆环面积的知识解决生活中的实际问题。一上课,我先让学生进行快乐填空,把圆的面积计算公式以及直径与半径的关系作为知识铺垫,预习展示环节设计了三道小题,掌握了圆的面积计算方法,紧接着就设计了两道计算题,一道是 已知半径求面积,一道是已知直径求面积,每组的1号同学板演,2号批改。结果发现知识掌握比较牢固。第三个小题是检测对新知识的预习效果,画出圆环的外圆半径。学生经过预习展示,收获颇多。

  课堂顺利进入交流展示环节,我首先组织大家小组合作说说圆环的特点,并讨论圆环面积的计算方法。汇报展示时根据同学们的总结课件出示圆环的特点,两个圆的圆心在同一个点上,也就是同心圆。俩圆之间的距离处处相等。然后先自主学习例2,独立计算圆环的面积,这时,我让每组的2号同学板演。当大多数同学都准确计算出结果时,我看着讲台上的4位同学,心里一愣,怎么会是这个结果呢?刚才如果让4号上台多好啊!时间的关系我立即让他们停了下来,通过评讲发现,4人中仅有一人做对了,其余三人都是计算错误。这也暴露了一个问题,三位数乘法计算掌握的不够好,有的计算了两位就写出了结果,有的虽然计算方法正确,但准确率低。对照学生的板书,我及时让大家观察,怎样计算比较简便?大家一致认为郭江龙的计算简便,他利用了乘法分配率使运算简便。为了让学生好记,我和学生又一起推导出圆环的面积计算公式:S环=3。14×(R2—r2)。然后,看着公式我又追问:要想求圆环的面积,必须知道什么条件?学生异口同声答道:必须知道R和r。如果没告诉怎么办?学生一起研究R、r和环宽之间的关系。得出:R—r=环宽。

  课堂进入反馈展示环节,我放手让学生自己独立完成两个习题,结果做的还是不理想,很多同学出错。反思一下自己的教学,原因有三点:

  1、第一小题是告诉了大圆的直径和小圆的直径,没有直接告诉R和r,必须先求出来,比例题多了两步,造成有些学生列综合算式出错。

  2、圆环这节课虽然比较简单,但毕竟是一节新授课,学生原来对这方面的知识一无所知。每一点,每一步都需要老师的指导、演示。

  3、要提高计算能力,还必须牢记一些常用的数字,如2π、3π ……9π以及计算公式。

  在教育过程中,一定要遵守教育教学规律,不能操之过急,不能拿自己的水平去要求学生。学生的学习需要一个循序渐进、螺旋上升的过程。只有这样,学生才会进步,才会有收获。

圆环的面积一等奖教学设计第 4 篇

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

  弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。鉴于这种情况,我反思如下:

  一、操作引路,感悟新知。

  我先让学生观察课件上生活中的环形物品,谁愿说一说你还见过那些环形物品?火炉盖、餐桌转动的部分、轮胎等。同学们我们已经观察了环形,现在大家动手做环形,(温馨提示:规范操作,注意安全)同学们在紧张制作过程中,我不断巡视,发现有个别同学剪出的小圆和大圆圆心不在同一个点上,我看在眼里,急在心里。小组交流剪环的过程,展示自己作品,通过看一看,摸一摸,说一说,环形是怎样形成的?它有什么特征? 环形的特征:两个圆必须是同心圆,其次,两个圆之间的距离处处相等。环形的宽度等于外圆半径减去内圆半径。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。

  二 、合作探究,凝炼新知

  反复演示从大圆中取出小圆,通过实践操作得出:环形的面积等于外圆面积减去内圆面积。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,交流展示,分析验证,比较计算方法,归纳出计算公式, 即S=∏R—∏r或S=∏(R—r)。讨论:这两个算式运用了哪个运算定律?哪个算式计算更为简便?

  三、强化练习,深化新知。

  为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的`练习与判断题,还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。虽然,在剪环环节耗费了较长的教学时间,但作业反馈较好。没有出现计算方法的错误。计算中错误,有待强化练习中来补救,看来“做数学”确实能够增进学生对知识的理解和掌握。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号