当前位置:首页 > 教案教学设计 > 教学设计一等奖

比例的意义教学设计详细一等奖

日期:2022-03-26

这是比例的意义教学设计详细一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

比例的意义教学设计详细一等奖

比例的意义教学设计详细一等奖第 1 篇

教学内容:

  《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  设计理念:

  学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

  教学目标:

  1、通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2、引导学生揭示知识间的联系,培养学生分析判断、推理能力。

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?

  (2)这两个相关联的量成正比例关系吗?为什么?

  2、猜想

  师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

  师:从字面上看“反比例”与“正比例”会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1、探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2、小组讨论、交流。(教师巡回查看,并做适当指导。)

  3、汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?

  反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4、做一做(略)

  5、学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1、基本练习。(略)

  2、拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

  反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3、综合练习

  四、总结

  反思:

  《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。

  如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

比例的意义教学设计详细一等奖第 2 篇

教材分析

  这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

  学情分析

  1、本班现有学生92人,男生49人,女生43人。

  2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

  3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

  教学目标

  1、知识与技能:理解比例的意义,认识比例各部分的名称。

  2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

  3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点和难点

  1、掌握比例的意义。

  2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  3、能根据一个比例写几个不同的比例。

  教学过程

  教学环节 教师活动 预设学生行为 设计意图

  一、复习

  1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

  2、怎样求比值?求下面各比的比值,你发现了什么?

  20∶252.7∶4.56∶10生回答。

  学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

  揭示

  课题这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

  探究

  比例的意义

  1、课件出示

  例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

  列表如下:

  竹竿长(m)23...... 影子长(m)69......

  2、你能写出多少个有意义的比?并求出它们的比值。

  3、观察这些比,把能用等号连接的比用等号连接起来。

  4、教师板书

  3∶2=9∶6

  2∶6=3∶9

  强调:这些都是比例。

  引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

  5、2∶9和3∶6能组成比例吗?你是怎么知道的?

  6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

  1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

  2、学生试写:

  2:3=6:9

  2:6=3:9

  3、学生合作探究:什么是比例?

  4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

  1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

  2、让学生分享在主动参与、探究中获取知识的愉悦心情。

  3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

  认识比例的各个项

  1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

  要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

  介绍分数形式的比例写法。

  学生小组合作探究,找出3∶2=9∶6和2:6=3:9

  的内项和外项。加深认识,学以致用。

  五、巩固练习

  1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?

  2、说一说比和比例有什么区别。

  3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。

  4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

  5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

  1、学生独立完成。

  2、汇报答题情况。

  检测学生学习效果。

  六、比与比例的区别

  1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

  2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

比例的意义教学设计详细一等奖第 3 篇

 教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

  教学重点:

  理解比例的意义和性质。

  教学难点:

  应用比例的意义和性质判断两个比能否组成比例。

  教学准备:

  多媒体课件一套。

  教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2、4米,宽1.6米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2、4∶1、6=3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2、4∶1、6=60∶40

  2、认识比例,知道比例各项的名称。

  ⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

  ⑵学生尝试说说什么叫比例。

  ⑶教学比例的各部分的名称。

  自学课本第34页的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

  ⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

  ⑸判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

  ⑴6∶10和9∶15⑵20∶5和1∶4

  ⑶1/2∶1/3和6∶4⑷0、6∶0、2和3/4∶1/4

  ⑹思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

  ⑴媒体出示

  8∶4=()∶()15:10=()∶412∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

  ⑵师提出问题:在一个比例中,它们项有什么特点?

  ⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

  ⑷集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

  ⑸观察自己写的其它几个比例,验证发现。

  ⑹小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  ⑴6∶3和8∶5⑵0、2∶2、5和4∶50

  ⑶1/3∶1/6和1/2∶1/4⑷1、2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

  板书设计:

  比例的意义和基本性质

  2、4∶1、6=3/2

  60∶40=3/2

比例的意义教学设计详细一等奖第 4 篇

 教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的`量”。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号