当前位置:首页 > 教案教学设计 > 美术教案

六年级美术《点的集合》

日期:2022-01-17

这是六年级美术《点的集合》,是优秀的美术教案文章,供老师家长们参考学习。

六年级美术《点的集合》

六年级美术《点的集合》第 1 篇

活动目标:

  1、通过寻找秋天的花,让幼儿认识花的颜色和形状,知道花卉可以美化环境。

  2、激发幼儿热爱大自然的情感。

  活动准备:场地(花坛、种植园地)

  活动过程:

  1、谈话活动

  “秋天到了,各种各样的花都开了,今天老师带小朋友出去找找都有哪些好看的花?”

  2、带领幼儿外出寻找花,教师讲解花的特征。

  “哦,花坛里的花真美丽,你们知道是什么花吗?(杜鹃花……)田野里还有好多漂亮的小野花。我们一起去看一看吧。”

  3、幼儿分散寻找、收集各种花。

  4、幼儿收集花装扮活动室。

  “我们收集了各种各样的花,它们有的是紫色的,有的是红色的,有的是白色的,五颜六色的真漂亮。有的花像太阳一样,有的像喇叭一样真好看。小朋友找到了各种各样的花,你们高兴吗?回家找找家里都有哪些漂亮的花,带来装扮我们的活动室。”

六年级美术《点的集合》第 2 篇

 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  课 型:新授课

  教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:集合的基本概念与表示方法;

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;

  教学过程:

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  阅读课本P2-P3内容

  二、 新课教学

  (一)集合的有关概念

  1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

  2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

  3. 思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

  4. 关于集合的元素的特征

  (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

  (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

  (3)集合相等:构成两个集合的元素完全一样

  5. 元素与集合的关系;

  (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A

  (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)

  6. 常用数集及其记法

  非负整数集(或自然数集),记作N

  正整数集,记作N*或N+;

  整数集,记作Z

  有理数集,记作Q

  实数集,记作R

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

  具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考)

  强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  四、 作业布置

  书面作业:习题1.1,第1- 4题

  五、 板书设计(略)

六年级美术《点的集合》第 3 篇

 一、教学目标:

  1、集合的两种表示方法(列举法和特征性质描述法)。

  2、能选择适当的方法正确的表示一个集合。

  重点:集合的表示方法。

  难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。

  二、复习回顾:

  1.集合中元素的特性:______________________________________.

  2.常见的数集的简写符号:自然数集 整数集 正整数集

  有理数集 实数集

  三、知识预习:

  1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法;

  2. _______________________ ____________________________________________________叫做集合A的一个特征性质.。___________________________________________________________________________________

  叫做特征性质描述法,简称描述法。

  三、说明:概念的理解和注意问题

  1. 用列举法表示集合时应注意以下5点:

  (1) 元素间用分隔号,

  (2) 元素不重复;

  (3) 不考虑元素顺序;

  (4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。

  (5) 无限集有时也可用列举法表示。

  2. 用特征性质描述法表示集合时应注意以下6点;

  (1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);

  (2) 说明该集合中元素的性质;

  (3) 不能出现未被说明的字母;

  (4) 多层描述时,应当准确使用且和或

  (5) 所有描述的内容都要写在集合符号内;

  (6) 用于描述的语句力求简明,准确。

  四、典例分析

  题型一 用列举法表示下列集合

  例1 用列举法表示下列集合

  (1)A={x N|0

  变式训练:○1课本7页练习A第1题。 ○2课本9页习题A第3题。

  题型二 用描述法表示集合

  例2 用描述法表示下列集合

  (1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线

  变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。

  题型三 集合表示方法的灵活运用

  例3 分别判断下列各组集合是否为同一个集合:

  (1)A={x|x+32} B={y|y+32}

  (2) A={(1,2)} B={1,2}

  (3) M={(x,y)|y= +1} N={y| y= +1}

  变式训练:1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( )

  A 4 B 5 C 10 D 12

  2、课本8页练习B第1题、习题A第1题

  例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A。

  作业:课本第9页A组第2题、B组第1、2题。

  限时训练

  1. 选择

  (1)方程组 的解集是( D )

  A. (5, 4) B. C. (-5, 4) D. (5,-4)

  (2)集合M= (x,y)| xy0, x , y 是( D )

  A. 第一象限内的点集 B. 第三象限内的点集

  C. 第四象限内的点集 D. 第二、四象限内的点集

  (3)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C )

  A. 1 B. -1 C. 2 D. -2

  2. 填空

  (1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______.

  (2)由平面直角坐标系内第二象限的点组成的集合为__ __.

  (3)下面几种表示法:○1 ;○2 ; ○3 ;

  ○4(-1,2);○5 ;○6 . 能正确表示方程组

  的解集的是__○2__○5_______.

  (4) 用列举法表示下列集合:

  A= =___{0,1,2}________________________;

  B= =___{-2,-1,0,1,2}________________________;

  C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

  (5) 已知A= , B= , 则集合B=__{0,1,2}________.

  3. 已知集合A= , 且-3 ,求实数a. (a= )

  4. 已知集合A=

  (1) 若A中只有一个元素,求a的值;(a=0或a=1)

  (2)若A中至少有一个元素,求a的取值范围;(a1)

  (3)若A中至多有一个元素,求a的取值范围。(a=0或a1)

六年级美术《点的集合》第 4 篇

教学目标:

  1.使学生理解集合的含义,知道常用集合及其记法;

  2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;

  3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。

  教学重点:

  集合的含义及表示方法。

  教学过程:

  一、问题情境

  1.情境.

  新生自我介绍:介绍家庭、原毕业学校、班级。

  2.问题.

  在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?

  二、学生活动

  1.介绍自己;

  2.列举生活中的集合实例。

  3.分析、概括各集合实例的共同特征.

  三、数学建构

  1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素。

  2.元素与集合的关系及符号表示:属于,不属于。

  3.集合的表示方法:

  另集合一般可用大写的拉丁字母简记为集合A、集合B。

  4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R。

  5.有限集,无限集与空集.

  6.有关集合知识的历史简介。

  四、数学运用

  1.例题.

  例1 表示出下列集合:

  (1)中国的直辖市;(2)中国国旗上的颜色。

  小结:集合的确定性和无序性

  例2 准确表示出下列集合:

  (1)方程x2―2x-3=0的解集;

  (2)不等式2-x0的解集;

  (3)不等式组 的解集;

  (4)不等式组 2x-1-33x+10的解集。

  解:略

  小结:(1)集合的表示方法列举法与描述法;

  (2)集合的分类有限集⑴,无限集⑵与⑶,空集⑷

  例3 将下列用描述法表示的集合改为列举法表示:

  (1){(x,y)| x+y = 3,x N,y N }

  (2){(x,y)| y = x2-1,|x |2,x Z }

  (3){y| x+y = 3,x N,y N }

  (4){ x R | x3-2x2+x=0}

  小结:常用数集的记法与作用。

  例4 完成下列各题:

  (1)若集合A={ x|ax+1=0}=,求实数a的`值;

  (2)若-3{ a-3,2a-1,a2-4},求实数a。

  小结:集合与元素之间的关系.

  2.练习:

  (1)用列举法表示下列集合:

  ①{ x|x+1=0};

  ②{ x|x为15的正约数};

  ③{ x|x 为不大于10的正偶数};

  ④{(x,y)|x+y=2且x-2y=4};

  ⑤{(x,y)|x{1,2},y{1,3}};

  ⑥{(x,y)|3x+2y=16,xN,yN}.

  (2)用描述法表示下列集合:

  ①奇数的集合;②正偶数的集合;③{1,4,7,10,13}

  五、回顾小结

  (1)集合的概念集合、元素、属于、不属于、有限集、无限集、空集;

  (2)集合的表示列举法、描述法以及Venn图;

  (3)集合的元素与元素的个数;

  (4)常用数集的记法。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号