日期:2021-12-17
这是三角函数入门,是优秀的数学教案文章,供老师家长们参考学习。
1、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:
即:一角的正弦大于另一个角的余弦。
2、若 ,则 ,
3、 的图象的对称中心为 ( ),对称轴方程为 。
4、 的图象的对称中心为 ( ),对称轴方程为 。
5、 及 的图象的对称中心为 ( )。
6、常用三角公式:
有理公式: ;
降次公式: , ;
万能公式: , , (其中 )。
7、辅助角公式: ,其中 。辅助角 的位置由坐标 决定,即角 的终边过点 。
8、 时, 。
9、 。
其中 为内切圆半径, 为外接圆半径。
特别地:直角 中,设c为斜边,则内切圆半径 ,外接圆半径 。
10、 的图象 的图象( 时,向左平移 个单位, 时,向右平移 个单位)。
11、解题时,条件中若有 出现,则可设 ,
则 。
12、等腰三角形 中,若 且 ,则 。
13、若等边三角形的边长为 ,则其中线长为 ,面积为 。
14、 ;
三角函数(trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
三角函数计算软件
功能
1.计算输入的三角函数值,注:正弦值等于角对边除以角斜边
2.余弦值等于角邻边除以角斜边;正切值等于角对边除以角邻边
3.根据已知数据角度、对边长度、斜边长度、邻边长度计算相应边长
4.可计算正弦,余弦,正切函数.已知,两边求角度或者已知一角一边求另两边
更新内容
1.修复了部分漏洞
2.修复了部分机型不支持的问题
一、教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式大学网的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用; 2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:
(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:
cos??????cos?cos??sin?sin?;cos??????cos?cos??sin?sin?.
这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?
提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?
让学生动手完成两角和与差正弦和正切公式.
??????????????sin??????cos?????????cos?????????cos????cos??sin????sin?
?2???2??2???2?
?sin?cos??cos?sin?.
sin??????sin???????????sin?cos?????cos?sin?????sin?cos??cos?sin?
让
学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)
tan??????
sin?????sin?cos??cos?sin?
. ?
cos???cos?cos??sin?sin?
通过什么途径可以把上面的式子化成只含有tan?、tan?的形式呢?(分式分子、分母同时除以cos?cos?,得到tan??????注意:????
?
2
?k?,??
tan??tan?
.
1?tan?tan?
?
2
?k?,??
?
2
?k?(k?z)
以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?
tan??????tan???????????
tan??tan????tan??tan?
?
1?tan?tan??1?tan?tan?
?k?,??
注意:????
?
2
?k?,??
?
2
?
2
?k?(k?z).
(二)例题讲解
例1、利用和(差)角公式计算下列各式的值:
27iss2o4c2s7onc24is(1)、n
?
s2oc07socn02ni07sis;(2)、0
?
;(3)、
1n51a?t
1n51a?t
.
解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.
n274soicsn2427siocsn7i2s240n3is(1)、
???
??
??
??
?
?
??
1
; 2
27socn07n02iisssoc020709soc0?(2)、0;
?
(3)、
151na?tn54at51nat151na?t151n54at
?
??1
5
?n4a5t51?
0n6at?335
??
.
cos(???)?,求tan??tan?的值. 例2 已知cos(???)?,
例3
xx
解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
1?
x
?x?2cosxx???
sin30cosx?cos30sinx???30?x??
思考:?正、余弦分别等于和
1
2
的. 小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用. 作业:
32??1???
1、 已知tan??????,tan?求的值.() ???,tan??????
5
?
4?
4
?
4?
22
2、 已知0???
值.
?
4
?????
3????3?3??5
求sin?????的,cos?????,sin?????,
4?4?5?4?13
二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用. 二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,
sin??????sin?cos??cos?sin?;
cos??????cos?cos??sin?sin?;
tan??????
tan??tan?
.
1?tan?tan?
我们由此能否得到sin2?,cos2?,tan2?的公式呢?(学生自己动手,把上述公式中?看成?即可), (二)公式推导:
sin2??sin??????sin?cos??cos?sin??2sin?cos?;
cos2??cos??????cos?cos??sin?sin??cos2??sin2?;
思考:把上述关于cos2?的式子能否变成只含有sin?或cos?形式的式子呢?cos2??cos2??sin2??1?sin2??sin2??1?2sin2?;
cos2??cos2??sin2??cos2??(1?cos2?)?2cos2??1.
tan2??tan??????
tan??tan?2tan?
?.
1?tan?tan?1?tan2?
注意:2??
?
2
?k?,??
?
2
?k? ?k?z?
(三)例题讲解 例4、已知sin2??
?
?
4
2
5??
,???,求sin4?,cos4?,tan4?的值. 1342
解:由???,得?2???.
2
512
??又因为sin2?
?,cos2???. 1313?
于是sin4??2sin2?cos2??2?
5?12?120
; ??????
13?13?169
2
120
sin4?120?5?119
;tan4??. ???cos4??1?2sin22??1?2????
cos4?119?13?169
169
?
例5、已知tan2??,求tan?的值. 解:tan2??
2tan?12
?tan??6tan??1?0
,由此得2
1?tan?3
13
解得tan???2
tan???2
(四)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
例6、试以cos?表示sin2,cos2,tan2
2
2
???
2
.
?1和cos??1?2sin2
解:我们可以通过二倍角cos??2cos2因为cos??1?2sin2因为cos??2cos2
?
2
?
2
?
2
来做此题.
?
2
,可以得到sin2
?
2
?
1?cos?
; 21?cos?
. 2
?
2
?1,可以得到cos2
?
2
?
又因为tan2
?
?1?cos?. 1?cos?cos2
2
sin2
?
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例7、求证:
sin??????sin??????(1)、sin?cos???; ??2
1
(2)、sin??sin??2sin
???
2
cos
???
2
.
证明:(1)因为sin?????和sin?????是我们所学习过的'知识,因此我们从等式右边着手.
sin??????sin?cos??cos?sin?;sin??????sin?cos??cos?sin?.
两式相加得2sin?cos??sin??????sin?????;
sin??????sin??????即sin?cos???; ??2
1
(2)由(1)得sin??????sin??????2sin?cos?①;设?????,?????,
那么??
???
2
,??
???
2
.
???
2cos
把?,?的值代入①式中得sin??sin??2sin
???
2
.
思考:在例2证明中用到哪些数学思想?
证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 例8
、求函数y?sinxx的周期,最大值和最小值.
解:y?sinx
x这种形式我们在前面见过,
?1????y?sinx?x?2?sinxx?2sinx????, ?2?3????
所以,所求的周期T?
2?
?
?2?,最大值为2,最小值为?2.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数
y?Asin??x???的性质研究得到延伸,体现了三角变换在化简三角函数式
中的作用.
小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用. 总结: 1.
公式的变形
(1) 升幂公式:1+cos2α=2cos2α 1—cos2α=2sin2α
(3) 正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ) tanα-tanβ=tan(α-β)(1+tanαtanβ) (4) 万能公式(用tanα表示其他三角函数值)
2.
插入辅助角公式
3.
熟悉形式的变形(如何变形)
1±sinx±cosx 1±sinx 1±cosx tanx+cotx 1-tanα1
+tanα
1+tanα1-tanα
π
若A、B是锐角,A+B= ,则(1+tanA)(1+tanB)=2
4
4. 在三角形中的结论(如何证明) A+B+Cπ
若:A+B+C=π =
22tanA+tanB+tanC=tanAtanBtanC ABBCCA
tan tan +tan+tantan=1 222222
9.求值问题
(1)已知角求值题 如:sin555° (2)已知值求值问题 常用拼角、凑角
π3π35
如:1)已知若cos( -α)=,+β)=
45413 π3ππ
又
34
2)已知sinα+sinβ= ,cosα+cosβ=,求cos(α-β)的值。
55(3)已知值求角问题
必须分两步:1)求这个角的某一三角函数值。2)确定这个角的范围。 π11
如:.已知tanα= ,tanβ= ,且αβ都是锐角,求证:α+2β=
7341.(2010全国卷1理)(2)记cos(?80?)?k,那么tan100??
2. 已知0?x?
?
2
,化简:
x?
lg(cosx?tanx?1?2sin2)?x?)]?lg(1?sin2x).
22
解析:原式?lg(sinx?cosx)?lg(cosx?sinx)?lg(sinx?cosx)2?0. 3.(2010天津文)(17)(本小题满分12分)
在?ABC中,
ACcosB
?。 ABcosC
(Ⅰ)证明B=C:
1??
(Ⅱ)若cosA=-,求sin?4B???的值。
3
?
3?
【解析】本小题主要考查正弦定理、两角和与差的正弦、同角三角函数的基本关系、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分.
(Ⅰ)证明:在△ABC中,由正弦定理及已知得
sinBcosB
=.于是sinCcosC
sinBcosC-cosBsinC=0,即sin(B-C)=0.因为???B?C??,从而B-C=0. 所以B=C.
(Ⅱ)解:由A+B+C=?和(Ⅰ)得A=?-2B,故cos2B=-cos(?-2B)=-cosA=.
又0
= 从而
sin4B=2sin2Bcos2B=
?
?
. 3
13
7,cos4B=cos22B?sin22B??.
99
所以sin(4B?)?sin4Bcos?cos4Bsin
3
3
?
3
?
4.(2010湖北理) 16.(本小题满分12分) 已知函数f(x)=cos(?x)cos(?x),g(x)?sin2x?
3
3
??
1
214
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合。
5.(2009江苏,15)设向量a?(4cos?,sin?),b?(sin?,4cos?),c?(cos?,?4sin?) (1)若a与b?2c垂直,求tan(???)的值; (2)求|b?c|的最大值;
(3)若tan?tan??16,求证:a∥b.
分析 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能
力
。
6.(2009安徽卷理)在?ABC中,sin(C?A)?1, sinB=. (I)求sinA的值;
(II)设
?ABC的面积.
本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运
1
3
算求解能力。
?B,(Ⅰ)由C?A?,且C?A??∴A??,
∴sniAsni?(11∴sin2A?(1?sinB)?,又sinA?
0,∴sinA?
233
?
2?4B2?BB(cos)422
C
B2
,
ACBC
?(Ⅱ)如图,由正弦定理得
sinBsinA
A B
∴BC?
ACsinA
?
sinB
3
?sinC?sin(A?B)?sinAcosB?
cosAsinB
?
1
??
33333
1
2
12
?3
∴S?ABC?AC?BC?sinC?7.(2009湖南卷文)已知向量a?(sin?,cos??2sin?),b?(1,2). (Ⅰ)若a//b,求tan?的值; (Ⅱ)若|a|?|b|,0????,求?的值。 解:(Ⅰ) 因为a//b,所以2sin??cos??2sin?, 于是4sin??cos?,故tan??.
(Ⅱ)由|a|?|b|知,sin2??(cos??2sin?)2?5, 所以1?2sin2??4sin2??5.
从而?2sin2??2(1?cos2?)?4,即sin2??cos2???1,
于是sin(2??)?4
1
4
?
??9?又由0????知,?2???,
4445??7?
,或2???. 4444
3??
因此??,或??.
42
所以2??
?
?
8.(2009天津卷理)在⊿ABC中,
AC=3,sinC=2sinA (I) 求AB的值:
??
(II) 求sin?2A???的值
?
4?
本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。满分12分。
(Ⅰ)解:在△ABC中,根据正弦定理,于是AB=sinCBC?2BC?2
sinA
5
ABBC
?
sinCsinA
AB2?AC2?BD225
?
2AB?AC5
(Ⅱ)解:在△ABC中,根据余弦定理,得cosA=于是 sinA=从而
?cos2A?
5
sin2A=2sinAcosA=4,cos2A=cos2A-sin2A=3
55
4
4
4
所以 sin(2A-?)=sin2Acos?-cos2Asin?=
?
2
10
??
???
9.(2007安徽)已知0???,?为f(x)?cos?2x???的最小正周期,
?
2cos2??sin2(???)??1??
·b?m.求2),且a b?(cos?,的值. a??tan?????,?1?,
cos??sin?4????
π?
解:因为?为f(x)?cos?2x???的最小正周期,故??π.
?
8?
??·b?m,又a因a·b?cos?·tan??????2.
4
?
?
??
故cos?·tan??????m?2.
4
?
?1
1
由于0???,所以
π4
2cos2??sin2(???)2cos2??sin(2??2π)
?
cos??sin?cos??sin?2cos2??sin2?2cos?(cos??sin?)?? cos??sin?cos??sin?
?2cos?
1?tan?π??
?2cos?·tan?????2(2?m)
1?tan?4??
m??,n??cosA,sinA?
第一課时:正弦和余弦(1)
教学目的
1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键
1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程
一、复习提问
1、什么叫直角三角形?
2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?
二、新授
1,让学生阅读教科书第一页上的插图和引例,然后回答问题:
(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)
(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)
(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。)
(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。)
但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?
(引导学生回答;在这些直角三角形中,∠A的.对边与斜边的比值仍是一个固定值。)
三、巩固练习:
在△ABC中,∠C为直角。
1,如果∠A=600,那么∠B的对边与斜边的比值是多少?
2,如果∠A=600,那么∠A的对边与斜边的比值是多少?
3,如果∠A=300,那么∠B的对边与斜边的比值是多少?
4,如果∠A=450,那么∠B的对边与斜边的比值是多少?
四、小结
五、作业
1,复习教科书第1-3页的全部内容。
2,选用課时作业 设计。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号