日期:2021-12-17
这是二次函数的笔记总结,是优秀的数学教案文章,供老师家长们参考学习。
二次函数知识点(1):二次函数概念
二次函数图像是轴对称图形。对称轴为直线
,顶点坐标
,交点式为
(仅限于与x轴有交点和的抛物线),与x轴的交点坐标是
和
。
注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
二次函数知识点(2):二次函数公式大全
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax²+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a
III.二次函数的图象
在平面直角坐标系中作出二次函数y=x??的图象,
可以看出,二次函数的图象是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b²;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax²;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²;+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根(转载于 :wwW.dyhZDl.cn : [二次函数知识点总结]二次函数知识点)。
函数与x轴交点的横坐标即为方程的根(转载于 :wwW.DyhzDl.cn : [二次函数知识点总结]二次函数知识点)。
1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
1.二次函数的一般形式:y=ax2+bx+c.(a0)
2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距,即二次函数图象必过(0,c)点.
3. y=ax20)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax20);
这个二次函数是一个特殊的二次函数,有下列特性:
(1)图象关于y轴对称;(2)顶点(0,0);
4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值,从而求出解析式-------待定系数法.
5.二次函数的顶点式:y=a(x-h)2+k(a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.
6.求二次函数的解析式:已知二次函数的'顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.
7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:
k值增大=图象向上平移;
k值减小图象向下平移;
(x-h)值增大=图象向左平移;
(x-h)值减小图象向右平移.
8.二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式:
9.二次函数y=ax2+bx+c(a0)中,a、b、c与的符号与图象的关系:
(1)a=抛物线开口向上;0 抛物线开口向下;
(2)c=抛物线从原点上方通过;c=0 抛物线从原点通过;
c=抛物线从原点下方通过;
(3)a, b异号=对称轴在y轴的右侧;a, b同号=对称轴在y轴的左侧;
b=0对称轴是y轴;
(4)b2-4ac=抛物线与x轴有两个交点;
b2-4ac =0=抛物线与x轴有一个交点(即相切);
b2-4ac=抛物线与x轴无交点.
10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.
1.二次函数的一般形式:y=ax2+bx+c.(a0)
2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距,即二次函数图象必过(0,c)点.
3. y=ax20)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax20);
这个二次函数是一个特殊的二次函数,有下列特性:
(1)图象关于y轴对称;(2)顶点(0,0);
4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值,从而求出解析式-------待定系数法.
5.二次函数的顶点式:y=a(x-h)2+k(a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.
6.求二次函数的解析式:已知二次函数的'顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.
7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:
k值增大=图象向上平移;
k值减小图象向下平移;
(x-h)值增大=图象向左平移;
(x-h)值减小图象向右平移.
8.二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式:
9.二次函数y=ax2+bx+c(a0)中,a、b、c与的符号与图象的关系:
(1)a=抛物线开口向上;0 抛物线开口向下;
(2)c=抛物线从原点上方通过;c=0 抛物线从原点通过;
c=抛物线从原点下方通过;
(3)a, b异号=对称轴在y轴的右侧;a, b同号=对称轴在y轴的左侧;
b=0对称轴是y轴;
(4)b2-4ac=抛物线与x轴有两个交点;
b2-4ac =0=抛物线与x轴有一个交点(即相切);
b2-4ac=抛物线与x轴无交点.
10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号