当前位置:首页 > 教案教学设计 > 数学教案

三角形的面积获奖教案

日期:2021-12-19

这是三角形的面积获奖教案,是优秀的数学教案文章,供老师家长们参考学习。

三角形的面积获奖教案

三角形的面积获奖教案第 1 篇

  一、教学内容:

  《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。

  二、教学目标分析

  (1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。

  (2)通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念。

  (3)使学生明白事物之间是相互联系,可以转化和变换的。

  三、教学要点分析

  教学重点:理解、掌握三角形的面积计算公式

  教学难点:理解三角形面积公式的推导过程

  四、教学策略设计

  (1)导入新课时激励学生求新知——诱导自主学习。

  (2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。

  (3)内化新知创新设疑,讨论质疑——创新自主学习

  (4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。

  (5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的等腰直角三角形,和两个完全一样的钝角三角形。

  五、过程设计

  本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。

三角形的面积获奖教案第 2 篇

  一、导入新课:

  上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积

  二、探究新知:

  (一)操作引入

  1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。

  2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。

  (二)公式推导

  1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。

  2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。

  3、长方形的长与这个三角形的底是什么关系?板书

  4、长方形的宽与这个三角形的高是什么关系?板书

  5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。

  6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?

  7、操作验证(学生小组完成)

  结论:等腰直角三角形的面积是拼成的正方形面积的一半。

  钝角三角形的面积是拼成的平行四边形面积的一半。

  8、推导公式:生答:通过实验我们知道,等底等高的`三角形是它所拼成图形面积的一半,所以三角形的面积=底×高÷2。

  三、拓展练习

  刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。

  1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)

  2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。

  3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。

  4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。

  5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。

  四、课堂小结

  出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  1、你从这节课学到了哪些知识?

  2、你认为计算三角形面积需要注意什么?

  三、板书设计

  三角形的面积

  长方形面积=长×宽正方形面积=边长×边长平行四边形面积=底×高

  三角形面积=底×高÷2三角形面积=底×高÷2三角形面积=底×高÷2

三角形的面积获奖教案第 3 篇

  教学内容:三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

  教学过程

  复习导入:

  1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式.

  1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7.教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  (三)判断

  一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

  2、等底等高的两个三角形,面积一定相等。()

  3、两个三角形一定可以拼成一个平行四边形。()

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

  板书设计

  三角形的面积

  平行四边形的面积=底×高,

  三角形面积=拼成的平行四边形的一半,100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积获奖教案第 4 篇

教材分析:《三角形的面积》一课是北师大版五年级上第四单元图形的面积的第五节内容,属于平面图形面积计算教学范畴。通过平面图形面积计算教学,不仅可以引导学生把握平面图形的特征,把握平面图形之间的内在联系,真切地体悟渗透其中的转化思想,而且可以开发和利用学生的模仿能力,这种模仿融合着类比的思考,融合着创造的体验。学习《三角形的面积》一课之前,学生已经有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学生在学习方法方面的基础有:在学习平行四边形的面积时,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。三角形的面积计算公式推导的方法与平行四边形面积计算公式的推导方法有相通之处,因此本节课进一步运用转化思想来探究等积变形是十分重要的,对后面继续探究梯形面积的计算,圆的面积计算以及圆柱的体积计算都有重要帮助。

  

教学目标:

1.探索并掌握三角形面积公式,能正确计算三角形的面积,并能用公式解决简单的实际问题。

2.培养学生应用已有知识解决新问题的能力。

3.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

4.让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确运用公式计算三角形的面积。

教学难点:在转化中发现图形内在联系及推导说理。

教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:课件、平行四边形纸片、两个完全一样的三角形纸片若干组、剪刀等。

学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

一、创设情境,揭示课题

师:我们学校一年级有一批小朋友加入少先队组织,学校做150条红领巾,要我们帮忙算算要用多少布,同学们愿意帮学校解决这个问题?

师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)

[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。]

二、探索交流、归纳新知

师:上节课我们学习平行四边形面积的计算方法,我们是通过什么方法探究平行四边形面积?平行四边形的面积公式是什么呢?

(板书:平行四边形面积=底×高)

师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?

[设计意图:学生由于有平行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢?从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫。]

(一)分组实验,合作学习。

提出操作和探究要求。

⑴将三角形转化成学过的什么图形?

⑵三角形与转化后的图形有什么关系?

让学生拿出课前准备的三种类型三角形,小组合作动手拼一拼、摆一摆或剪拼。

(二)学生以小组为单位进行操作和讨论。

学生根据老师提出的问题,进行讨论。

[设计意图:这里,根据学生“学”的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会。]

(3)展示学生的剪拼过程,交流汇报。

各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)

可能出现以下情况:(用两个完全一样的三角形摆拼)

(两锐角三角形)(两钝角三角形)(两直角三角形)(两个等腰直角三角形)

通过实验学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形。

也可能把一个三角形剪拼成平行四边形。

3.归纳交流推导过程,说出字母公式。

讨论后填空:

(1)、两个完全相同的三角形可以拼成一个平行四边形;这个平行四边形的底等于____;这个平行四边形的高等于____;

(2)、每个三角形的面积等于和它等底等高的平行四边形面积的____。

所以,三角形面积=____。

结论:每个三角形的面积是拼成的平行四边形的面积的一半。

根据学生讨论、汇报,教师进行如下板书:

因为:三 角 形 面 积=拼成的平行四边形面积÷2

所以:三 角 形 面 积=底×高÷2(高是底边上的高。)

[设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率。]

师:如果用S表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

结合学生回答,教师板书S=ah÷2

[设计意图:通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。]

三、闯关游戏、应用新知

第一关 比比谁的基础实

1.试一试,计算三角形的面积。

2、根据条件,求出三角形的面。

(1)底5厘米,高7厘米。

(2)高13米,底10米。

(3)底0.8米,高11分米。

小组做题,比比谁算的又对又准。

第二关 比一比谁的思路活

1.计算下面图形的面积,你发现了什么?(单位:cm)

得出:等底等高的两个三角形面积相同。

学生计算,讨论得出结论

2、想一想,下面说法对不对?为什么 ?

(1)三角形面积是平行四边形面积的一半。( )

(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

(3)等底等高的两个三角形,面积一定相等。 ( ) 

(4)两个三角形一定可以拼成一个平行四边形。 ( )

正确请坐好,错误举起手说出理由。

第三关 比比谁应用得好

1、制作150条少先队员戴的红领巾,大约需要多少平方米的布?(让学生动手测量所需数据,再进行计算)

2、测量你手中三角形的一条底边和它对应的高并计算它的面积。

测量时,强调对应。

[设计意图:让学生学会自己动手测量选取需要的数据,应用所学知识灵活解决问题。]

三、归纳总结,提升认识

1、在这节课里你有什么收获?你有什么要提醒大家注意的?

2、今天,你又学到了哪些解决问题的方法?

[设计意图:让学生对所学习的内容进行小结,是学到的知识进行系统化。]

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号