当前位置:首页 > 教案教学设计 > 数学教案

乘方教学设计

日期:2021-12-24

这是乘方教学设计,是优秀的数学教案文章,供老师家长们参考学习。

乘方教学设计

乘方教学设计第 1 篇

[教学内容]

苏教版(国标)数学一年级下册P77—78;

[教学目标 ]

1、通过故事情境的创设,让学生在自主探索,合作交流中感受乘加乘减算式的具体的意义及运算顺序,并能按顺序正确地运算;

2、使学生体会到解决问题的多样性,培养学生的发散思维能力,发展探索、合作的能力,并体验成功的乐趣;

[教学重点]

乘加乘减的运算顺序;

[教学难点 ]

理解乘减的算理,并进行乘加乘减间的改写;

[教学准备]

主题图、桃子图片、

[教学过程 ]

一、 创设情境,激趣导入

谈话:小朋友们,你们喜欢小动物吗?那么你们通常都养些什么小动物呢?你能猜一猜小明最喜欢养什么小动物吗?(学生尽情的猜)

他究竟养的是什么小动物呢?让咱们一起来看一看吧!(出示主题图)

二、 探索新知,弄清算理

1、引导观察,提出问题;

(1) 从图中你知道了什么?把你知道的同你同桌说一说;

(2) 再指名说一说;

(3) 你能根据图中知道的提出数学问题吗?

学生充分发表后小结为:一共养了多少条金鱼呢?

2、 指导列式,交流算理

(1) 要求一共养了多少条金鱼?用算式怎样表示出来?

(2) 学生独立思考,也可同桌交流;

(3) 指名汇报交流各种算法;

根据学生回答板书:

① 数数;

② 4+4+4+2=

③ 4×3+2=

④ 4×4-2=(这里可以追问是怎么想的?再多指名说说进一步理解乘减的意义)

⑤ 引导学生给③、④式起名;(板书:乘加乘减)

(4) 这些算式你会算吗?请选择一道你喜欢的算出它的结果;

(5) 交流算理;

这里着重对乘加乘减要让学生多说说运算的顺序;

3、 整理强化,小结算法。

在计算乘加、乘减算式时,都是先算乘法再算加法或减法;

三、 巩固深化,应用拓展。

1、“想想做做”第1题。

谈话:小朋友们刚才你们的.表现很出色,小明为感谢你们特意给你们送上了水果。(投影出示书图)

① 学生独立完成,指名板演;

② 评讲时让学生说说图意、算式及为什么这样列式?

③ 你能列出一道乘减算式吗?

④ 小组讨论再指名汇报追问:你是怎样想的?

2、“想想做做”第3题。

谈话:吃完了水果让我们一起去操场运动吧!瞧,一群小朋友正在运动呢!(投影出示书图)

① 看图你能猜出,哪边活动的小朋友多呢?

② 是否猜对了呢?还是让我们算一算吧!

③ 学生独立完成算式,有困难同桌可以讨论交流;

④ 指名交流、汇报说说怎么想的?

⑤ 组织讨论:这两道算式有什么不同的吗?

3、“想想做做”第4题。

谈话:这些小朋友在跳绳、拍球,那就让我们去打乒乓球吧!(投影出示书图)

① 这里的球拍够我们用吗?

② 学生看图列式计算;

③ 汇报交流,提倡不同的列式;

④ 追问:为什么这样列式?你是怎么算的?

4、联系学习、生活实际,让学生出一些乘加乘减的情境并说说怎么列式、计算的。

5、在括号里填上“ +”或“—”。

3×2○3=9 2×2○2=6

4×4○4=12 1×4○4=0

6、、游戏----摘桃子。

运动后,让我们一起来做个游戏----摘桃子。

游戏规则:学生上来从桃树上摘下自己最喜欢的桃子,桃子后有乘加乘减的算式,算对了,桃就送给你。否则就得不到。

四、 总结评价。

小朋友们,经过这一路的游戏、活动你有什么收获吗?把你的收获跟你小组内的合作伙伴们说一说,再在全班汇报。

五、 延伸发展。

东东去商店买本子。本子每本3元钱,他带的钱最多买2本,请问东东他可能带了多少钱?

小组活动,比比赛赛看那组的方法和结果最多。

乘方教学设计第 2 篇

  一、教材分析

  ▲教材的地位和作用

  《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从“数”的相应运算入手,类比过渡到“式”的运算,从中探索、归纳“式”的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

  ▲学情分析

  ①说已有知识经验

  学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

  ②说学习方法和技巧

  自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

  ③说个性发展和群体提高

  新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

  ▲教材重难点

  重点:幂的乘方的推导及应用。

  难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

  二、教学目标

  新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

  ㈠知识与技能目标

  ⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

  ⑵掌握幂乘方法则。

  ⑶会运用法则进行有关计算。

  ㈡过程与方法目标

  ⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

  ⑵体会具体到抽象再到具体、转化的数学思想。

  ㈢情感、态度与价值观

  体验用数学知识解决问题的`乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教法与学法

  教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以“学生为本”的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

  学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  四、教材处理

  ⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

  ⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

  ⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

  ⑷课外作业中补充一道“极限挑战”,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

  五、教学过程

  学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

  ①创设情境,引入课题。

  ②自主探索,展示新知。

  ③应用新知,解决问题。

  ④反馈练习,拓展思维。

  ⑤学有所思,感悟收获。

  ⑥布置作业,学以致用。

  1、创设情境,引入课题

  《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

  问题1:同底数幂的乘法法则是怎么样的?

  问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

  设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

  2、自主探索,展示新知

  (1)自主探索

  出示幻灯片“试一试”

  请计算下列各题:①(23)2②(104)2③(104)100④(a3)n

  (多媒体演示时,先出现①②,再出现③,最后出现④)

  设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

  (2)合作交流,展示成果

  计算:(am)n

  设计意图:“数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。”因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

  3、应用新知,解决问题

  (1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

  ①(107)2②(b4)3③(am)4④[(x-y)3]5

  ⑤[(-2)2]10⑥-(y3)4⑦(-y3)4

  设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。(2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

  (3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

  (2)出示例2:计算下列各式

  ①(y2)3·(y3)4②x·x2·x3-(x2)3+x2-x4

  ③(-2)2×(-23)4④1000×10n×(103)2

  设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

  ②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的“教”和学生的“学”必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

  (3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

  设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

  4、反馈练习,拓展思维

  (1)出示改错题(多媒体演示)

  下列各题计算正确吗?

  ①(x2)3+x5=x5+x5=2x5

  ②x3·x6+(x3)3=x9+x9=x18

  ③x2(x4)2+x5·x2=x10+x10=x20

  设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

  (2)设计一个探究活动(多媒体演示)

  魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

  设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

  5、学有所思,感悟收获

  设计三个问题:

  ①通过本节课学习,你学会了哪些知识?

  ②通过本节课学习,你最深刻的体验是什么?

  ③通过本节课学习,你心里还存在什么疑惑?

  设计意图:学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

  6、布置作业,学以致用

  必做题:作业本

  选做题:①已知162×43×26=22x-1,(102)y=1020求x+y.

  ②已知:比较2100与375的大小。

  设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

  六、板书设计幂的乘方幂的乘方法则的

  推导过程同底幂的乘法法则

  幂的乘方法则范例板书

  学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

  七、设计说明

  1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是“回顾反思”。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现“教是为了不教,学是为了会学”!

乘方教学设计第 3 篇

  【教学目标】

  (1)正确理解乘方、幂、指数、底数等概念.

  (2)会进行有理数乘方的运算.

  (3)培养探索精神,体验小组交流、合作学习的重要性.

  【教学方法】

  讲授法、讨论法。

  【教学重点】

  正确理解乘方的意义,掌握乘方运算法则.

  【教学难点】

  正确理解乘方、底数、指数的概念,并合理运算.

  【课前准备】

  教师准备教学用课件,学生预习。

  【教学过程】

  【新课讲授】

  边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.

  a·a简记作a2,读作a的平方(或二次方).

  a·a·a简记 作a3,读作a的立方(或三次方).

  一般地,几个相同的因数a相乘,记作an.即a·a……a. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.

  在an中,a叫底数,n 叫做指数,当an看作a的n次方的结果时,也可以读作a的n次 幂.

  例如,在94中,底数是9,指数 是4,94读作9的 4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).

  思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?

  (-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-( 2×2×2),结果是-8.

  (-2)3与 -23的意义不相同,其结果一样.

  (-2)4的底数是-2,指数是4,读作-2的四次幂,表示

  (-2)×(-2)×(-2)×(-2),

  结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为

  -(2×2×2×2),其结果为-16.

  (-2)4与-24的意义不同,其结果也不同.

  ( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .

  因此,当底数是负数或分数时,一定要用括号把底数括起来.

  一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.

  因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.

  例1:计算:

  (1)(-4)3; (2)(-2)4; (3)(- )5;

  (4)33; (5)24; (6)(- )2.

  解:(1)(-4)3=(-4)×(-4)×(-4)=-64

  (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16

  (3)(- )5=(- )×(- )×( - )×(- )×(- )=-

乘方教学设计第 4 篇

  一、教学目标:

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

  3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程:

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答: -3 - 3×3×(-3)=

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出 的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层? 2

  (2)对折二次有几层?

  (3)对折三次有几层?

  (4)对折四次有几层?

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记: ……

  师:请同学们总结 对折n次有几层?可以简记为什么?

  2×2×2×2……×2

  SHAPE MERGEFORMAT

  n个2

  生:可简记为:

  师:猜想: 生:

  师:怎样读呢? 生:读作 的 次方

  老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同

  的因数), 叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号