日期:2021-12-24
这是人教版二元一次方程组教案,是优秀的数学教案文章,供老师家长们参考学习。
第一课时
一、教学目标
1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法.
2.通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力;
3.通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点.
二、重点·难点·疑点及解决办法
1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组.
2.教学难点:正确地判断出可以分解的二元二次方程.
3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚.
4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组.(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组.
三、教学过程
1.复习提问
(1)我们所学习的二元二次方程组有哪几种类型?
(2)解二元二次方程组的基本思想是什么?
(3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法是什么?其主要步骤是什么?
(4)解方程组:.
(5)把下列各式分解因式:
①;②;③.
关于问题设计的说明:
由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由
两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接
受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程组成的二元二次方程组的解法,其中有一个二元二次方程可以分解,因此,问题(5)的设计是为本节课的学习内容做准备的.
2.例题讲解
例1解方程组
分析:这是一个由两个二元二次方程组成的二元二次方程组,其解题的基本思路仍为“消元”、“降次”,使之转化为我们已经学过的方程组或方程的解法.那么如何转化呢?关于转
化的形式有两种,要么降二次为一次,要么化二元为一元我们通过观察方程组中的两个方程有什么特点,可以发现:方程组(2)的右边是0,左边是一个二次齐次式,并且可以分解为,因此方程(2)可转化为,即或,从而可分别和方程(1)组成两个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,从而解出这两个方程组,得到原方程组的解.
解:由(2)得
因此,原方程组可化为两个方程组
解方程组,得原方程组的解为
说明:本题可由教师引导学生独立完成,教师应对学生的解题格式给予强调.
例2解方程组
分析:这个方程组也是由两个二元二次方程组成的方程组,通过认真的观察与分析可以
发现方程(2)的左边是一个完全平方式,而右边是完全平方米,因此将右边16移到左边后可利用平方差公式进行分解,,即或,从而可仿例1的解法进行.
解:由(2)得
.
即,或.
因此,原方程组可转化为两个方程组
解这两个方程组,得原方程组的解为
巩固练习:
1.教材P60中1.此练习可让学生口答.
2.教材P60中2.此题让学生独立完成.
四、总结扩展
本节小结,内容较为集中并且比较简单,可引导学生从两个方面进行总结:(1)本节课学习了哪种类型的方程组的解法;(2)这种类型的方程组的解题步骤如何?
这节课我们学习了由两个二元二次方程组成的并且有一个方程是可以分解成两个二元一次方程的方程组的解法,解这种类型的方程组的步骤是将原二元二次方程组转化为两个已学习过的二元二次方程组,从而求出原方程组的解.
关于比较特殊的二元二次方程组的解法,教师可以利用辅导课的时间补充两个二元二次方程都可以分解的二元二次方程组的解法.
五、布置作业
1.教材P61A1,2,3.
六、板书设计
探究活动
若关于的方程只有一个解,试求出值与方程的解.
解:化简原方程,得(1)
当时,原方程有惟一解,符合题意.
当时,方程(1)根据的判别式
,故方程(1)总有两个不同的实数解,按题意其中必有一根是原方程的增根,原方程可能产生的增根只是0或1.
把代入(1),方程不成立,不合题,故增根只能是,把代入(1)得,此时方程为,
当时,分式方程的解为;当时,分式方程的解为.
教学目标:
1.会用加减消元法解二元一次方程组.
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的'思想方法.
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元.
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
巩固练习(一):练一练1.(1)
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
巩固练习(二):练一练1.(2)(3)(4)2.
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
六、作业
习题10.31.(3)(4)2.
学习目标 :会运用代入消元法解二元一次方程组.
学习重难点:1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习过程:
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:
二、自学、合作、探究
1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。
3、若 的解,则a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。
6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。
8、当k=______时,方程组 的解中x与y的值相等。
9、用代入法解下列方程组:
⑴ ⑵ ⑶
二、训练
1、方程组 的解是( )
A. B. C. D.
2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。
3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )
A. B.2,1 C.-2,1 D.-1,0
5、用代入法解下列方程组
⑴ ⑵
6、如果(5a-7b+3)2+ =0,求a与b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
8、若方程组 与 有公共的解,求a,b.
教学目标:
1、会用代入法解二元一次方程组
2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。
此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。
引导性材料:
本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的`速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60
Y=2X 观察
2(X+2X)=60与 2(X+Y)=60 ①
Y=2X ② 有没有内在联系?有什么内在联系?
(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)
知识产生和发展过程的教学设计
问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。
解方程组 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此: X=10
Y=20
问题2:你认为解方程组 2(X+Y)=60 ①
Y=2X ② 的关键是什么?那么解方程组
X=2Y+1
2X—3Y=4 的关键是什么?求出这个方程组的解。
上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。
问题3:对于方程组 2X+5Y=-21 ①
X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?
(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)
例题解析
例:用代入法将下列解二元一次方程组转化为解一元一次方程:
(1)X=1-Y ①
3X+2Y=5 ②
将①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0 ①
3X-5=Y ②
将②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5 ①
3X+4Y=2 ②
由①得Y=5-2X,将Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3 ①
3S+2T=8 ②
由①得T=2S-3,将T=2S-3代入②消去T得:
3S+2(2S-3)=8
课内练习:
解下列方程组。
(1)2X+5Y=-21 (2)3X-Y=2
X+3Y=8 3X=11-2Y
小结:
1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。
2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。
3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。
课后作业:
教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号