当前位置:首页 > 教案教学设计 > 数学教案

二元一次方程组教学设计

日期:2021-12-25

这是二元一次方程组教学设计,是优秀的数学教案文章,供老师家长们参考学习。

二元一次方程组教学设计

二元一次方程组教学设计第 1 篇

教学建议

一、重点、难点分析

本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解。难点是了解二元一次方程组的解的含义。这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解。用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答。这是克服这一难点的关键所在。

二、知识结构

本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念。

三、教法建议

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念。

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组。

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题。

4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如和矛盾方程组如

等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数的系数为0,方程(1)也看作一个二元一次方程。

教学设计示例

一、素质教育目标

(—)知识教学点

1。了解二元一次方程、二元一次方程组和它的解的概念。

2。会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式。

3。会检验一对数值是不是某个二元一次方程组的解。

(二)能力训练点

培养学生分析问题、解决问题的能力和计算能力。

(三)德育渗透点

培养学生严格认真的学习态度。

(四)美育渗透点

通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和*。

二、学法引导

1.教学方法:讨论法、练习法、尝试指导法。

2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础。

三、重点难点疑点及解决办法

(—)重点

使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解。

(二)难点

了解二元一次方程组的解的含义。

(三)疑点及解决办法

检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点。在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了。

四、课时安排

一课时。

五、教具学具准备

电脑或投影仪、自制胶片。

六、师生互动活动设计

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念。

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组。

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题。

二元一次方程组教学设计第 2 篇

一、教学目标

【知识与技能】

会用加减消元法解二元一次方程组。

【过程与方法】

学生在自主探索和合作交流中,进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想。

通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,提高观察、分析能力。

【情感态度与价值观】

通过比较两种解法的差别与联系,体会透过现象抓住事物的本质这一认识方法.

二、教学重难点

【重点】

用加减消元法解二元一次方程组。

【难点】

在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想。

三、教学过程

(一)导入新课

每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢? 出示例题

请学生思考怎样做?

(二)探究新知

1.利用代入消元法进行解题

师生活动:引导学生思考能不能够利用之前学习的知识进行解决。

学生会想到利用上节课学习过的代入消元法进行解题,将②变形为x= (5y-11)/2,带入①中就可以得出结果

有的学生也会想到把②变形为5y=2x+11,带入①中。

追问1:能不能不利用带入的形式直接消掉一个未知数呢?

师生活动:想到5y和-5y互为相反数,能不能直接将两个等式相加就可以消掉未知数y,就可以得出结果。

(四)小结作业

小结:教师与学生一起回顾本节课所学的主要内容,并请学生回答一下问题:

(1)本节课学习了哪些主要内容?

(2)我们是怎样解得二元一次方程组的结果的?

(3)在求解的过程中主要利用了什么方法?

作业:通过本节课的学习,总结什么时候应该用代入消元法什么时候应该用加减消元法解决问题?

四、板书设计

五、教学反思

二元一次方程组教学设计第 3 篇

教学目的

1.使学生通过探索,逐步发现解方程组的基本思想是“消元”,化二元——次方程组为一元一次方程。

2.使学生了解“代人消元法”,并掌握直接代入消元法。

3.通过代入消元,使学生初步理解把“未知”转化为“已知”,和复杂问题转化为简单问题的思想方法。

重点、难点

1.重点;用代入法把二元一次方程组转化为一元一次方程。

2.难点:用代入法求出一个未知数值后,把它代入哪个方程求另一个未知数值较简便。

教学过程

一、复习

1.什么叫二元一次方程,二元一次方程组,二元一次方程组的解?

2.把3x+y=7改写成用x的代数式表示y的形式。

二、新授

回顾上一节课的问题2,如果设应拆除旧校舍xm2,建新校舍ym2,那么根据题意可列出方程组。

y-x=20000×30% ①

y=4x ②

怎样求这个二元一次方程组的解呢?

方程②表明,可以把y看作4x,因此,方程①中的y也可以看着4x,即将②代人①(得到一元一次方程,实际上此方程就是设应拆除旧校舍xm2,所列的一元一次方程)。

这样就二元转化为一元,把“未知”转化为“已知”。你能用同样的方法来解问题1中的二元一次方程组吗?

让学生自己概括上面解法的思路,然后试着解方程组。对有困难的同学,教师加以引导。并总结出解方程的步骤。

1. 选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。

2.把③代人另一个方程,得一元一次方程。

3.解这个一元一次方程,得一个未知数的值。

4.把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。

以上解法是通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的,这种解法叫做代人消元法,简称代入法。

四、小结

1.解二元一次方程组的思路。

2.掌握代入消元法解二元一次方程组的一般步骤。

二元一次方程组教学设计第 4 篇

1、经历列出二元一次方程组解决有关多个未知量的实际问题,理解二元一次方程组及其解的基本概念,体会二元一次方程组是解决这类问题的一种有效的数学模型。

2、会用代入消元法和加减消元法解简单的二元一次方程组,并能根据方程组的特点,灵活选用适当的解法。

3、通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想,以及化“求知”为“已知”,化复杂问题为简单问题的化归思想。

4、会根据具体问题中的数量关系列出二元一次方程组并求解,能检验所得结果是否符合实际意义。

1.使学生了解二元一次方程,二元一次方程组的概念。

2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。

3.通过引例的教学,进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。

重点、难点

1.重点:了解二元一次方程。二元一次方程组以及二元一次方程组的解的含义,会检验一对数是否是某个二元一次方程组的解。

2.难点;了解二元一次方程组的解的含义。

教学过程

二、新授

1.让学生在教科书中表格中填人数字或式子:

2.那么根据填表结果可知 x十y=7 ① 3x+y=17 ②

思考问题:这两个方程有什么共同的特点?

(都含有两个未知数,且含未知数的项的次数都是1)

这里的x、y要同时满足两个条件:一个是胜与平的场数和是7场;另一个是这些场次的得分一共是17分,也就是说,两个未知数x、y必须同时满足方程①、②。因此,把两个方程合在一起,并写成

x+y=7 ①

3x+y=17 ②

上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程。把这两个二元一次方程①、②合在一起,就组成了一个二元一次方程组。

结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

3.用算术方法或通过列一元一次方程都可以求得勇士队胜了5场,平了2场,即x=5,y=2

这里的x=5,与y=2既满足方程①即 5十2=7

又满足方程②,即 3×5十2=17

我们就说x=5与y=2是二元一次方程组的解。

一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

二元一次方程组的解的检验范例。

四、小结

1.什么是二元一次方程,什么是二元一次方程组?

2.什么是二元一次方程组的解?如何检验一对数是不是某个方程组的解?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号