日期:2021-12-26
这是从分数到分式教案板书设计,是优秀的数学教案文章,供老师家长们参考学习。
一、授课内容的数学本质和教学目标定位
【授课内容的数学本质】
分数与分式联系紧密,二者是具体与抽象、特殊与一般的关系.分数的有关结论与分式的相关结论具有一致性,即数式通性.可以通过类比分数的概念、性质和运算法则,得出分式的概念、性质和运算法则.由分数引入分式,既体现了数学学科内在的逻辑关系,也是对类比这一数学思想方法和科学研究方法的渗透.
从整数到分数是数的扩充,从整式到分式是式的扩充.数学知识源于生活、用于生活.分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力.
分式概念是形式定义,分式的分母不能为0(即分式有意义的条件)是对分式概念的深入理解.此外,考察使分式值为0(或为正数、为负数)的条件,本质上是解一类特殊的分式方程(或不等式).明确分式的分母不能为0有助于理解解分式方程可能产生增根的道理.
【教学目标定位和教学重、难点】
教学目标:
1. 了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件.
2. 通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.
3. 体会类比等数学思想或方法,获得代数学习的成功经验.
本节课的重点为分式概念、分式有意义的条件;难点是分式有意义及分式的值为0的条件.
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.
二、教材的地位和作用
本节课是分式单元起始课,主要内容是分式的概念、分式有意义的条件和用分式表示数量关系.分数和整式的知识是学习本节课的基础,本节课内容也是进一步学习分式性质、运算、解分式方程以及后续学习反比例函数的基础.
新教材体系下,学生已经历了从有理数到整式再到一次函数的思维提升;从本节课开始,学生的思维还要经历从分数到分式再到反比例函数的又一次螺旋式上升.
三、教学诊断分析
班级状况:授课班级41名学生多数有较好的数学素养,求知欲强,乐于面对挑战;也有少数学生学习数学的热情不高、代数运算能力较弱.
知识基础:学生对分数和整式的知识比较熟悉,也已初步掌握了列代数式、求代数式的值及解简单的一元方程或不等式的方法.本节课中,预计所有学生对由分数类比到分式的过渡不会感到困难;也能顺利发现当发现字母取某些特殊值时,分式无意义.
预计可能出现的主要问题:分析复杂分式时,容易遗漏分母不为0的条件或者将其误解为分母中的字母取值不为0.在将分子等于0的条件转化为方程、将分母不等于0的条件转化为不等式后,也可能不知从何入手求解由方程和不等式组成的条件组.这部分内容是教学重点和难点.
四、教法特点以及预期效果分析
本节课的教学设计中,我重点关注以下几个问题:(1) 学习兴趣的培养,(2) 重点难点的突破,(3) 应用意识的渗透,(4) 思维训练的层次.
为此,在引入部分,打破学科界限,用学生熟悉的诗文素材构建情境、挖掘问题,提升学生的学习兴趣,激发他们的探究热情,让学生在逐一解决问题的过程中体会成就感、并通过揭示复杂分式的实际背景的练习提升思维层次.
接下来,教师引导学生观察、归纳所列出的分式的特点,形成分式概念,突出重点.形成概念的过程中要警惕负迁移的发生.例如,在给出分式的形式表示后,可能有学生因机械记忆“B中含字母”或者“A中含字母”而导致混乱.这时需要教师及时指出,关键是理解分母含字母.又如,学生已学习了一次函数,可能会从变量和函数的角度观察分式.教师可以肯定学生的数学思维,但不必在此展开强调函数观点,紧扣住本节课类比分数认识分式的主要思路即可.
在突破难点的过程中,为达到引发类比、化旧知为新知的教学目的,设计了填写表格这个探究环节.通过填表,学生产生认知冲突、然后自己发现问题、分析问题和解决问题的过程,正是体现学生主体性的学习过程.这个设计也能渗透给学生一种认识新事物、学习新知识的方法——
(1) 从具体入手:当分式中字母取定具体的数值时,分式即表示具体的数.
(2) 发现问题:当字母取某些特殊值时,有可能出现分母等于0的情况.
(3) 分析、解决问题:类比分数有意义的条件可知,分式要有意义,分母不能为0.
虽然上述过程对相当一部分学生而言确实简单了些,但其中隐含的“从具体入手”、“正向思维”等研究方法并不平凡.华罗庚先生所讲的“巧从拙中来”,庶几近之.另外,这张表也为学生后续学习反比例函数做了初步铺垫.
两道例题的分析讲解需要体现教师的主导性.先帮助学生总结出分式有意义和值为0分别需要满足的条件,再通过板书教给学生严谨有序的思维模式,使学生体会到方程和不等式联立的方法有助于理清思路,同时分散了解题难点(列条件、解条件组分为两个步骤).这是帮助学生从感性思维上升到理性思维的重要一步.另一方面,学生领会和掌握这种解题方法需要一个过程.通过多种变式练习,教师引导学生多实践、多谈思路,做到师生互动、生生互动,发现问题后互相提醒、纠正,达到落实双基的效果.
三个拓广探究问题力求让不同层次的学生都能有发挥的空间.
练习1引导学生灵活处理方程和不等式组成的条件组:先解方程,再将方程的解逐一代入不等式检验.
练习2引导学生将视野由等量关系拓展至不等关系,类比分数的值为负数的条件得到这个分式的值为负数的条件.
练习3是学生熟悉的追及问题情境,他们可以很快地给出正确代数式,但一般不会首先考虑取值范围.教师可以从肯定学生的生活经验出发,先让学生列式,体会成就感,再从分式要有意义的角度提醒学生关注字母的取值范围,最后引导提升到字母取值应使实际问题有意义的认识高度,潜移默化中渗透数学建模的意识.
游戏环节再次提升学生的兴趣.教师鼓励学生开阔思路、大胆发言、不断出新,师生共同分享“突发奇想”、掌握知识的喜悦.这个设计旨在培养学生的发散思维和创造力,也符合新课标中鼓励学生在自主探索和合作交流中掌握数学知识的理念.
本节课的分层作业中,必做题目涵盖了本课的重、难点内容;选作题目是开放式的,鼓励学生在探究中创新求变、总结规律,提高分类的意识和穷举的能力.
总之,本节课的教法特点是:通过不断提出和解决问题,激发学生的求知欲,使学生在老师的引导下,通过观察、归纳、总结、应用甚至游戏掌握新知.从实际教学效果看,学生思考积极、发言踊跃,始终保持了一种积极的课堂状态.
本节课我对基础薄弱的学生能否顺利形成概念给与了特别的关注,保证绝大多数学生能跟上最低限度的教学要求.在思维拓展的环节中,学生也不乏精彩的发言和创见,应该说实现了课前设计的三维教学目标.
从分数到分式
课时: 一课时
知识与技能目标
1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.
2.使学生能够求出分式有意义的条件,过程与方法目标
能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比
转化的`思想方法研究解决问题.
教学重点和难点,准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点
教学方法: 探究与讲授结合.
教学过程
活动一 情境引入:
一般轮船在静水中的最大航速为20千米/时,它沿江
以最大航速顺流流航行100千米所用时间,与以最大航
速逆水航行60千米所用时间相等,江水的流速为多少?
活动二 思考
活动三 观察
(1) 由学生分组讨论分式的定义,对于“两个整式相
除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①两个整式相除
②分母中含有字母.
(4)整式与分数的不同.分工具有一般性.
活动四 分式中的分母应满足什么条件?
如同分数一样,分式的分母不能为零
活动五 : 1、求分式的值.2、何时分式的值为零?
例1(1)当a=1,2时,求分式 的值;
解:(1)当a=1时,
当a=2时
例2当x取何值时,下列分式有意义?
思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?
例3 当x取何值时,下列分式的值为零?
解:由分子x+3=0得x=-3.
而当x=-3时,分母2x-7=-6-7≠0.
∴当x=-3时,原分式值为零.
例4 当x 取何值是分式 的值为零。
解:由分子|x| - 1 =0得x = ±1
当x = 1时 x+1≠0
当x=-1时x+1=0,分式无意义。
∴当x = 1时原分式的值为零。
小结:若使分式的值为零,需满足两个条件:
①分子值等于零;②分母值不等于零.
活动六 课堂练习p课本第6页1——3
活动七 课堂小结
本节课你学到了哪些知识和方法?
1.分式的定义。
2、分式与分数的区别.
3.分式何时有意义?
4.分式何时值为零?
作业
教材p10页 第1—3题
教学目标:
了解分式的概念,并能正确判断一个代数式是否为分式,能区分整式与分式;
能熟练地求出分式有意义的条件,分式的值为零的条件;
以描述实际问题中的数量关系为背景,抽象出分式的概念,体会是刻画现实世界中数量关系的一类代数;
经历与分数类比学习分式的过程,养成缜密的思维习惯,形成类比思想,体验数学的价值;
通过丰富的现实情境,在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.
教学重点:
分式的概念及分式有意义的条件。
教训难点:
理解和掌握分式值为0时的条件.
教法与学法:
课堂引入--讲授新课--学生解决问题--巩固新知--再探新知--课堂小结.
教学准备:
多媒体与教学课件
教学过程:
创设情景,引入新课:
填空:(1)小明同学参加50米赛跑
如果小明的速度是7米/秒,那么他所用的时间是( )秒;
如果小明的速度是a米/秒,那么他所用的时间是( )秒;
如果小明原来的速度是a米/秒,经过训练的速度每秒增加了1米,那么他现 在所用的时间是( )秒.
老师若把体积为200 cm3的水倒入底面积为33 cm2的圆柱形保温桶中,水面高度为( )cm;若把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为( ).
采购秒表8块共8a元,一把发射枪b元,合计为( ) 元.
学生分组讨论得出答案,并指出书写形式:同5XXXXX3可以写成一样,式子AXXXXXB可以写成
答案:,,,,,
讲授新课:
(一)分式的概念:
学生讨论
(1)把式子, , , , ,进行分类
(2)式子,, 它们有什么特点?
让学生观察思考,并与小学学过的分数对比,归纳总结出这些式子的特点。
特点:(1)从形式上都具有 形式,(2)分子A、分母B都是整式,
(3)分母B中都含有字母.
归纳出分式的定义:一般地,如果A、B都表示整式,且B中含有字母,那么称为分式。其中A叫做分式的分子,B为分式的分母。
注意:分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点.
例1:指出下列代数式中,哪些是整式,哪些是分式?
学生回答问题.
(二)分式有意义的条件:
学生讨论:
分式中,分母可以取任意实数吗?
我们知道除数不能为0,通过学生思考、讨论等活动,让学生充分认识到分式的一
大要求:分母不能为0。
当B=0时,分式 无意义.
当B≠0时,分式 有意义.
例2:下列分式中的字母满足什么条件时分式有意义?
(2)
解:⑴要使分式 有意义,则分母,即;
(2)要使分式 有意义,则分母,即;
变式训练:
已知分式
(1)当为何值时,分式有意义?
(2)当为何值时,分式值为0?
(三)分式值为0:
当分子A=0且分母B≠0时,分式 的值为零.
课堂练习:
1、课本128页练习1,2,3
2、拓展练习:
当取何值时,下列分式 的值为0
课堂小结:
通过本节课的学习你有哪些收获?(知识与思想方法)
布置作业:
必做题:课本第133页习题15.1第1、2、3题
选做题:当是什么值时,分式的值是0?
六、板书设计:
15.1.1从分数到分式
分式的概念
(1)是 (即AXXXXXB)的形式 例题讲解
(2)分子A与分母B都是整式 例2
(3)分母 B中含有字母
2、分式的意义:
当B=0时,分式 无意义. 变式训练
当B≠0时,分式 有意义.
3、分式值为0:
当A=0而 B≠0时,分式 的值为零.
七、课后反思:
教学目标
1.了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件.
2.通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.
3.体会类比等数学思想或方法,获得代数学习的成功经验.
二、 教学重难点及教法
【教学重点】分式的概念,分式有意义的条件.
【教学难点】分式有意义的条件,分式的值为0的条件.
【教学方法】采用“设置情境-引导发现”的教法引入分式概念;采用学生自主观察归纳与教师启发点拨相结合的教法突出概念的形成过程;采用“精讲精练”的教法落实双基要求.
在教学中注重:(1)从分数到分式,是从具体到抽象、从特殊到一般的概念形成过程;(2)类比分数的有关知识得到分式的相关知识是研究分式的基本方法.
【教学用具】计算机课件;标记字母和数字的自制纸牌10张.
三、 教学过程设计
(一) 创设情境,形成概念
【情境引入】千里江陵几日还?
n 李白《早发白帝城》:“朝辞白帝彩云间,千里江陵一日还.”
n 郦道元《水经注·三峡》:“有时朝发白帝,暮至江陵,其间千二百里,虽乘奔御风,不以疾也.”(初二语文课文)
师生共同回忆诗文内容后,教师对“千里江陵”能否“一日还”提出疑问,并依次提出下列涉及船速、水速、距离和时间等数量关系的具体问题(其中问题(1)~(3)中不考虑水速):
(1) 如果半日行船530千米,船速约为多少千米/时?
(2) 如果行船速度为v千米/时,半日(12小时)行船距离是多少千米?
(3) 如果行船距离s千米,船速v千米/时,用时多少小时?
(4) 如果距离530千米,船速千米/时,水速10千米/时,则顺水行船需多少小时?
(5) 如果距离s千米,船速千米/时,水速千米/时,则逆水行船需多少小时?
学生列式:
(*)
教师继续出示两个复杂分式:
和
请学生尝试解释它们在行船问题中的含义.
【形成概念】
(*)式中代数式的排列顺序,体现了从分数到分式、从整式到分式的过渡.教师向学生指出,类比和归纳是探索新概念的重要方法.进而提问:以上代数式中哪些是整式?哪些不是整式?不是整式的代数式有哪些共同特征?
在学生观察、归纳的基础上,教师板书分式定义:
形如(A、B为整式,且B中含字母)的代数式叫做分式.
并类比分数剖析分式概念——
n 形式:与分数一样,分式也是由分子、分母和分数线组成.
n 内容:分数的分子分母都是整数,分式的分子分母都是整式.
n 要求:分式的分母中必须含字母;分子中可以含字母,也可以不含字母.
【练习】判断以下代数式中哪些是整式?哪些是分式?
(二) 加深理解,提升认识
【填表探究】 请学生填写一张求分式的值的表格:
…
-2
-1
0
1
2
…
…
-1
-2
无意义
2
1
…
…
无意义
-1
无意义
…
…
0
…
【课堂例题】 以下分式何时有意义?何时值为0?
(1) 分式; (2) 分式.
教师板书解题步骤,师生共同总结:
n 分式有意义,需要分母不为0,需要解一个带“≠”的不等式.
n 分式的值为0,既要分子等于0、也要分母不为0.可以用方程和不等式组成条件组表示上述条件.
【变式练习】以下分式何时有意义?何时值为0?
(三) 综合运用,拓展探究
【拓展练习1】当x______时,分式的值为0.
【拓展练习2】当x______时,分式的值为负数.
【拓展练习3】某同学每天早晨以每分钟a米的速度骑车上学.某日他出门8分钟后,爸爸发现他忘了数学作业本,立即骑摩托车以每分钟b米的速度去追. 问:几分钟后爸爸追上他?当a=200时,b能取200吗?b能取150吗?
(四) 总结感悟,发散思维
【总结】师生共同总结课堂所学知识和收获.
【游戏】在一组纸牌上标记数字1、2、3、4和字母a、b、c、k、x、y,请学生抽取3~4张并用上面的字母和数字组成分式.
四、 布置作业
l 必做作业:教材第8页习题16.1第1、2、3、8、13题(分别要求列分式、辨别整式和分式、分析分式何时有意义、分析分式何时值为0).
l 选作作业:用课堂抽到的字母和数字构造尽可能多的分式(字母、数字不重复使用).
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号