当前位置:首页 > 教案教学设计 > 数学教案

余角和补角几年级学的

日期:2021-12-30

这是余角和补角几年级学的,是优秀的数学教案文章,供老师家长们参考学习。

余角和补角几年级学的

 

补角与余角的讲课第 1 篇

第 1 篇

本节课是初一几何起始章节的新授课,在教学中,除了学科识以外还应传达给学生什么观念呢?我一直思考这个问题。

布鲁纳说:“学习任何学科,主要是要使学生掌握这门学科的基本结构,同时也要掌握研究这一学科的基本态度和方法。”本节课力求让学生通过起始新授课的学习,对初中几何的基本结构和研究方法有个基本了解!

1.借助理论思想—— 指导教学设计

范希尔几何思维理论将几何思维水平划分为五级,水平0:视觉;水平1:分析;水平2:非形式化的演绎;水平3:形式化的演绎;水平4:严密性。根据该理论对几何思维水平的界定,小学生的几何思维水平基本处于视觉和分析水平,这一阶段的儿童主要通过感官获得数学概念,能按照图形的构成要素及特征分析简单图形的性质,能够根据图形的某一性质对其分类,但是正确使用定义的能力较弱,无法建立起图形某些性质之间的联系。进入七年级,对于学生几何思维水平的要求应该逐步达到水平2和水平3,开始认识到图形和图形之间的联系。从思想上开始理解演绎推理的方法,逐渐了解到证明的重要性,确信几何定理必须要经过演绎推理才能建立。

根据该理论,小初几何研究对象和思维差异明显,小学研究对象以单个图形为主,推理方式主要是直观合情推理,比如小学主要研究单个角的大小问题,能够通过度量法直观的比较两个角的大小问题。初中不仅研究单个图形更侧重多个图形,推理方式主要是抽象演绎推理。

根据该理论,本节课讲互余和互补,更侧重于从抽象演绎推理的角度研究两个角的数量问题,让学生初步感受利用定义、公理、定理进行演绎推理的方式,由非严谨的说理逐步向严谨的说点理过渡,这是严谨思维的一次飞跃。

2.突出概念对比——体会定义几何概念的视角

本节课之前已经有了角的定义:有公共端点的两条射线组成的图形叫角。角的定义方式和余角、补角的定义方式有什么区别呢?对比发现,前者是从两条射线的位置关系定义的概念,而后者是从数量关系定义的概念,在教学中可以让学生体会这一点。

那么,这两种定义方式的本质区别是什么?以位置关系定义的概念可以从数量上对其进行分类。而以数量关系定义的概念可以按照位置关系进行分类。比如,两个互为补角的角可以从位置角度分成邻补角和非邻补角。从一定程度上讲,定义的方式已经决定了分类的方式。即定义的内涵决定了定义的外延。

其次,本节课还让学生进一步体会,位置和数量的不对称性,即:位置确定,数量随即确定;而数量确定,位置不一定确定。比如,互为余角的两个角,位置上是不受任何约束的。

在教学中既要让学生体会两种不同的定义方式,也就是概念的内涵问题。也要让学生体会不同的定义方式产生的分类问题,也就是概念的外延问题。

3.性质辨析——领悟研究两个图形关系的方式

余角和补角的性质本身不难理解,可以作为今后推理的依据。并可推广到一般情况,即如果两个角与第三个角的和为同一值,那么这两个角相等。

它的另外一个价值在于给出了研究问题的一种方向,那就是借助两角与第三个角的关系确定两角的数量关系。即通过第三个量建立起两个图形的相关性。

后续在研究平行线的性质与判定时,还会继续借助第三条截线建立两角之间的数量和位置关系, 他们共同之处在于——借助中间要素(中介角或关联线)去研究两个角的关系。这种研究问题的方式也为今后研究其它复杂几何问题开了先河,因此本节课对今后几何的学习有方向上的引领作用。

整体上,互余和互补虽然与位置无关,但是初中讲互余和互补,又不能脱离位置关系谈互余和互补,这是平面几何的特点决定的;因此,本节课没有回避位置关系。初三和高中阶段,尤其是高中阶段,学生将从数量的`角度,进一步体会互余或互补的两个角的三角函数值具有很好的相关性。

4.全面梳理公理化结构——感受公理化思想

本节课内容上没有难于理解的知识,但是背后实际上蕴含了丰富的营养。教学中,不仅限于让学生掌握学习内容,更重要的是感受知识背后传达的学科观念。让学生通过平面几何起始章的终结课,再次体会公理化思想,体会定义几何概念的视角,感受研究两个图形的数量关系时,可以借助第三个量来研究。从一开始既见树木,也见森林,让学生对初中几何有个整体感知。

欧氏几何是根基稳固的大厦,这座大厦最核心的就是由定义、公设、公理、定理组成的公理化体系。本节课并没有局限于散状的知识,而是立意高远,突出了定义—基本事实、公理—定理(教材视角)这一初中几何研究的主线,让学生通过平面几何起始章的终结课了解整个平面几何学科的结构框架,初步感受公理化思想。

总之,这节课立意深远,注重整体把握几何教学,通过这一章持续的渗透,学生基本能够体会初中几何研究的方法、视角,有一定的示范价值。

 

补角与余角的讲课第 1 篇

第 2 篇

学习目标分析

1.认识一个角的余角和补角 ,掌握余角和补角的性质。2.能运用概念和性质解决问题。3.发展学生空间观念和知识运用能力,学会简单的逻辑推理,提高概括能力。4.体会观察、推理、归纳对数学知识中获取数学知识的重要作用,学会独立思考和在交流中获益。

学情分析

前需知识掌握情况:1、能从静态和动态两种角度去描述角的概念。2、理角直角和平角的概念。3、能用符号表示角。4、能结合图形表示角的和差,达到形与数的结合。

对微课的认识:不少学生认为微课对他们的学习有所帮助。课堂上运用微课辅助教学能帮助学生突破重难点,课后运用微课辅助能帮助学生加深对知识的记忆。微课的简短性,可重复性观看也是少年学生其中喜欢理由之一。

学生特征分析

学习态度:七年级学生好动,喜欢新事物,对新的多媒体教学方式感兴趣。本班学生大部分是外来工子弟,学习基础薄弱,学习自觉性不足,自主学习能力有待提高。微课再多次播方功能辅助于课堂课后,能有效帮助学生消化课堂上存在的疑惑。

学习风格:七年级学生想象力丰富,喜欢观察 。本节课的教学中,微课辅助教学,要把推理作为学生经过探索、思考、归纳发现结论后的一个自然延续,是中学生比较喜欢的方式,它能让学生在观察、想象、交流等活中学习知识,发展空间观念。

微课用于学生学习的教学策略分析

微课用于学生学习的目的:能揭示几何图形基本概念的抽象特点,能给学生提供有意义的、直观的、有挑战性的学习任务,开展活动,引导他们观察,鼓励学生勤思考,多动手,多交流,帮助学生丰富经验,认识图形,验证学生的空间想象,帮助学生掌握知识,培养学生学习的兴趣。

微课用于学生学习的时机:本节课中微课用于学生学习的环节有:1.通过微课学习让学生理解余角和补角的概念;2.通过微课练习让学生巩固定义; 3.通过微课学习让学生探究余角和补角的性质;4.通过微课让学生理解运用性质。通过微课给学生提供的意义的的学习任务。

微课用于学生学习的方式:通过开展活动,在课堂上组织学生观看、思考、想象、合作交流、发现结论、验证猜想、体验探究的乐趣,发现的喜悦。

微课用于学生学习的教学片段设计

教学环节 教师活动 学生活动 对应的教学目标

探究余角和补角的概念 组织学生观看微课,提出问题:每一组图中,两个角度数的和是多少? 学生观看微课,观察,思考每组图中两个角度数的和关系 认识理解余角和补角的概念

练习概念强化 播放,展示有关余角和补角的习题,提示 交流讨论,回答讨论结果 强化互余与互补的数量关系,使学生对概念怕学习得到及时巩固。

探究余角和补角的性质 微课展示图形,提出问题让学生观察,猜想,讨论,引导学生大胆表达自己的发现,对勇于发表意见的学生给予掌声 学生观看、猜想,交流、发现、推理、归纳,描述结论。 发展学生空间观念和知识运用能力,学会简单的逻辑推理,提高概括能力,学会交流能力。

习题巩固性质 播放有相关性质的习题,提示 独立思考,完成练习,回答问题 检验学生的学习效果,通过训练,内化解题能力

微课用于学生学习的组织与管理

如何让学生获得微课资源:1.可通过建立学校微信资源站,让学生共享资源;2.可在课堂上辅助播放微课,让学生获得新知;3.通过建立班级群,让学生及其家长在微信群获得微课资源,学习相关微课内容。

如何确保学生学习了微课:1.检查课堂上的微课学习效果可通过设置问题提问检查学生的掌握程度;2.检查课后的微课学习效果可通过班群,请家长协助监督,或通过练习检测微课涉及的知识。

 

补角与余角的讲课第 1 篇

第 3 篇

教学目标:

知识目标:了解余角、补角的概念,掌握余角和补角的性质。

能力目标:使学生初步接触和体会演绎推理的方法和表述,使学生能用方程思想来处理图形的数量关系。

情感目标:通过探索互余、互补角的性质,培养学生积极的情感态度,促进良好的数学观的养成。

教学重难点

教学重点:余角与补角的概念及性质

教学难点:余角与补角的性质应用

教学流程:

验收成果

1、概念:

①如果两个角的和等于 ( ),就说这两个角互为余角。

符号语言:如果∠α+∠β= ,那么∠α和∠β互为 。

反 之:如果∠α与∠β互为余角,那么∠α+∠β= 。

②如果两个角的和等于 ( ),就说这两个角互为补角。

符号语言:如果∠α+∠β= ,那么∠α和∠β互为 。

反 之:如果∠α与∠β互为补角,那么∠α+∠β= 。

设计意图:让学生知道互为余角和互为补角的概念,并会用文字语言和符号语言表示。

温馨提示:互为余角、互为补角的两个角只与 有关,与 无关。

设计意图:挖掘概念的内涵、外延,注重在看似“无疑”处设疑,充分拓展学生思维的开阔性,让学生熟悉从多角度对概念进行思考。

2、试一试:你最棒!

(1)判断:

①∠1+∠2=90°,则∠1是余角 ( )

②∠1+∠2+∠3=90°,则∠1、∠2、∠3互为余角。 ( )

③如果一个角有补角,那么这个角一定是钝角。 ( )

④钝角没有余角,但一定有补角。 ( )

(2)找朋友:图中给出的各角,哪些互为余角?哪些互为补角?

10° 30° 50°| 10° 30° 60° 80°

60° 40° 80°| 100° 120° 150° 170°

设计意图:进一步强化两个角互余或互补的数量关系,使学生对概念的学习得到及时巩固。 (3)已知∠α的余角是∠α的两倍,则∠α的度数是 度。

设计意图:目的是让学生对余角和补角的概念有更加深化的了解和应用,并且使学生学会用方程思想来解决问题。

3、性质 ①等角的补角 ;

②等角的余角 。

设计意图:通过填空使学生了解互为余角、互为补角的性质。

思考题:

如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3。那么∠2与∠4相等吗?为什么?

设计意图:这道题引导学生通过独立思考、解答来证明互为余角的性质。着重引导学生用数学语言表达思考过程,并归纳性质,培养学生由具体问题抽象出几何命题的能力和语言表达能力。

拓展延伸:

1、如图,已知∠AOC=∠BOC=90°,∠1=∠2,则∠1的余角有那些?

与∠2互补的角有那些?请分别写出来。

2、动手实践探究:

按图所示的方法折纸,然后回答问题:

课堂小结:

这节课,使我感受最深的是……

我感到最困难的是……

我学会了什么

设计意图:其目的是让知识形成体系,理

清新知识,培养学生概括提炼能力。

达标检测:

1、如果∠1+∠2=90°,∠2+∠3=90°,那么∠1=∠3的理由是 ;

2、已知:∠A=72°,那么∠A的余角= ;∠A的补角= ;

附加题:已知一个角的补角是这个角的余角的3倍,则这个角等于 度。

设计意图:使教师得到反馈信息,及时了解学生的学习效果,能按时做对达标检测就达到学习目标,做到了“堂堂清”,并且将所学知识通过训练,内化为解题能力。

如图,已知直线AB与CD相交于点E,且∠CEF=90°,写出所有互补和互余的角。

《余角和补角》教学设计

课后反思:

学案最后要求学生写课后反思

设计意图:最后学案中安排学生写课后反思,这样可以使学生对照学习目标,知道自己哪些方面没有学透,以便课下及时补救。

 

补角与余角的讲课第 1 篇

第 4 篇

  一、教学 目标 :

  ⑴ 在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵ 经历观察、操作、推理、交流等活动,发展学生 的几何概念,培养学生 的推理能力和表达能力。

  ⑶ 体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

  二、教学 重点、难点:

  余角与补角的性质

  三、教学 过程 :

  复习、引入:

  ⑴ 复习角的定义。你知道有哪些特殊的角?

  ⑵ 用量角器量一量图中每组两个角的度数,并求出它们的和。

  你有什么发现?

  新课:

  由学生 的发现,给出余角和补角的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的余角和补角。

  ① ∠1的余角:90°-∠1

  ② ∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

  问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?

  (学生 讨论,请一人回答)

  ②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,

  那么∠2和∠4什么关系?为什么?

  结论:性质:①等角的余角相等。

  ②等角的补角相等。

  练习:看图找互余的角和互补的角,以及相等的角。

  结论:直角的补角是直角。凡是直角都相等。

  解决实际问题:

  在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。

  (学生 小组讨论,应用所学知识解决此问题)

  小结:

  ⑴ 这节课,使我感受最深的是……

  ⑵ 这节课,我感到最困难的是……

  ⑶ 这节课,我学会了……

  ⑷ 这节课,我发现生活中……

  ⑸ 这节课,我想我将……

  (学生 思考作答)

  作业 :目标检测P64,

  书P139-6(写书上),

  书P147-9,10(写本上)

  一、教学 目标 :

  ⑴ 在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵ 经历观察、操作、推理、交流等活动,发展学生 的几何概念,培养学生 的推理能力和表达能力。

  ⑶ 体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

  二、教学 重点、难点:

  余角与补角的性质

  三、教学 过程 :

  复习、引入:

  ⑴ 复习角的定义。你知道有哪些特殊的角?

  ⑵ 用量角器量一量图中每组两个角的度数,并求出它们的和。

  你有什么发现?

  新课:

  由学生 的发现,给出余角和补角的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的余角和补角。

  ① ∠1的余角:90°-∠1

  ② ∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的.余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

  问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?

  (学生 讨论,请一人回答)

  ②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,

  那么∠2和∠4什么关系?为什么?

  结论:性质:①等角的余角相等。

  ②等角的补角相等。

  练习:看图找互余的角和互补的角,以及相等的角。

  结论:直角的补角是直角。凡是直角都相等。

  解决实际问题:

  在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。

  (学生 小组讨论,应用所学知识解决此问题)

  小结:

  ⑴ 这节课,使我感受最深的是……

  ⑵ 这节课,我感到最困难的是……

  ⑶ 这节课,我学会了……

  ⑷ 这节课,我发现生活中……

  ⑸ 这节课,我想我将……

  (学生 思考作答)

  作业 :目标检测P64,

  书P139-6(写书上),

  书P147-9,10(写本上)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号