日期:2021-12-31
这是全等三角形优秀教案设计,是优秀的数学教案文章,供老师家长们参考学习。
教师是在不断地总结教学经验和教学反思中成长的,下面是我对这一节课的教学反思:
一、 教材选择
“全等三角形、”是学习平面图形关系的引言课。内容涉及的知识点不多,知识的切入点比较低。而人教版将其建立在已学内容“图形的变化”基础上,加强与前面的知识点的联系。
八年级学生有一定的自学、探索能力,求知欲强。借助于学案的优势,能使脑、手充分动起来,学生间相互探讨,积极性也被充分调动起来。
二、教法和学法
让学生通过折叠、作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。
三、教学过程设计
首先,本节课我本创设情境,以学生为主,突出重点的意图,结合学案使之得到充分的诠释。我让学生自己动手,通过平移、翻折和旋转的'作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题,总结出概念。我通过具体练习让学生总结,并带领学生寻找快速寻找对应的方法,练习的设计采用由易到难的手法,符合学生的认知规律,一气呵成,突破了本节课的重点和难点。真正做到以生为本,抓住课堂45分钟,突出效率教学。在B组练习中,我让学生尝试使用数学推理的格式,使学生熟悉这种推理方法。
其次,我在结尾总结全等三角形时让学生在生活中寻找实例,体现了数学与生活的联系,培养数学兴趣。
再次从教学流程来说:情境创设---自学概念与特征---练习与小结---变式练习 ---应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的常见图形练习,也为全等图形的变换奠定了基础。再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,一鼓作气,突破了本节课的重点和难点。
四、本节课的需要注意的几个问题
1、要更加充分地利用已有资源调动学生的积极性。我在设计中让学生自己看书得到全等的特征,没有调动学生,让他们自己去发现少。
2、针对不同层面的学生,注重学生的差异。学生的层次不同,本学案对基础较好的学生来说有吃不饱的感觉,应增加拓展提高练习,来满足这些学生的需求。
【课前准备】
数学《全等三角形》教案
1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
【例题讲解】
一.挖掘“隐含条件”判全等
如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)
1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD
2.如图点D在AB上,点E在AC上,CD与BE相交于点O,
且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。
3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD
二.添条件判全等
1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
根据“AAS”需要添加条件.
2.已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是.
三.熟练转化“间接条件”判全等
1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?
为什么?
2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?
3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.
巩固练习:如图,在中,,沿过点B的一条直线BE
折叠,使点C恰好落在AB变的中点D处,则∠A的度数.
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D
【当堂反馈】
1.(2006攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△
2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE
3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC
4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的`垂线,垂足分别为M、N
(1)你能找到一对三角形的全等吗?并说明.
(2)BM,CN,MN之间有何关系?
若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?
【课后作业】
1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.
要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.
2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.
(第3题)
(第4题)(第5题)(第6题)
3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()
A..2对B.3对C.4对D.5对
4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()
A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对
5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).
6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?
7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.
试说明:①CE=BG;②CE⊥BG;
⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.
试说明:①CD=BE;②求CD和BE所成的锐角的度数.
【拓展延伸】
如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
教学目标 知识与技能 (1)、经历探索三角形全等条件的过程,掌握三角形全等的“角边角”“角角边”判定方法 (2)、体会利用操作、归纳获得数学结论的过程。 (3)、培养学生的空间观念,推理能力,发展有条理地表达能力。 情感态度与价值观 (1)、经历和体验数学活动的过程以及数学在现实生活中的应用,树立学好数学的信心。 (2)、通过课堂学习培养学生敢于实践,勇于发现,大胆探索,合作创新的精神。 难点 三角形全等条件的探索,已知三角形两个角和一边画三角形 教学重点 经历对三角形全等条件的分析与画图验证的过程,能用“角边角”“角角边”去判定两个三角形全等。 教学方法 探索发现法、小组讨论法 教学过程 教学环节 教学内容 师生活动 设计意图及教师组织 创设问题情景,引入新知 一同学不小心打破了一块三角形的玻璃,如图:他应该拿哪一块回玻璃店做一块与原玻璃一模一样的? 教师利用教具提出问题,由学生讨论并提出自己的看法。 创设一个问题情境,激发学生学习的欲望和要求 建立模型,探索发现 1、动手探究 先任意画一个△ABC,再画一个△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B(即使两角和它们的夹边对应相等)。把画好的△A1B1C1剪下,放到△ABC上,它们全等吗? (让学生通过画图了解,画第一边后,已经定好两个顶点,再画两个角,两个角已确定,那么三角形的第三个顶点也确定,所以这两个三角形全等) 2、探究的结果反映了什么规律?你能得出什么结论? (板书:两角和它们的夹边对应相等的两个三角形全等,可以简写成“角边角”或“ASA”) 3、动手做一做 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?能利用角边角条件证明你的结论吗? 4、证明的结果得出什么结论? (板书:两个角和其中一个角的对边对应相等的两个三角形全等,可以简写成“角角边”或“AAS”) 5、你能利用上面的结论解决上课开始提出的问题吗? 1、由学生自己动手画图,并把两个三角形剪下叠和在一起,看是否能完全重合。 2、学生讨论,探究的'结果反映什么规律,学生回答后教师总结并板书。 3、先由学生猜想两个三角形是否全等,然后自己动手运用角边角条件证明,学生板书。 4、由学生叙述结论,教师强调“对应”。 5、由学生利用刚学的角边角的结论说明拿第3块回店里可以,并分别说明第1、2块为什么不可以,教师用课件演示。 培养学生养成在动手操作过程中仔细观察、勤于思考、善于发现的良好习惯。通过动手操作,使学生体验到两角和它们的夹边对应相等的两个三角形全等。 培养学生小组合作交流的好习惯。 由学生尝试用角边角证明两个三角形全等。 利用数学知识解决生活中的实际问题,渗透了数学来源于实际,又应用于实际的思想。 应用拓展,巩固新知 1、例3:已知,如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE 2、例3变式:已知,如上图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:BD=CE 3、如图,AB⊥BC,AD⊥DC,∠1=∠2,求证:AB=AD 4、如图,已知:AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C,求证:AE=CF 学生自学例3,教师给予提示:要证明两条线段相等,两条线段分别位于两个不同的三角形中则考虑证明两三角形全等,师生共同分析,教师把解题过程板书黑板。强调书写格式。 学生独立思考后,师生共同分析,由学生书写证明过程,教师强调书写证明格式,要求写出相应的理由 通过例题,使学生掌握运用“角边角”证明三角形全等的过程。教师板书,规范学生的书写格式,培养学生良好的学习习惯。 例题后的变式题和练习,检测学生对“角边角”和“角角边”的运用情况。 画一画,想一想 1、三角对应相等的两个三角形全等吗? 2、你能对三角形全等的判定方法做一个小结吗? 学生通过作图体验,教师巡视,并指导学生观察手上的三角板,大、小两个三角板的三个角都相等,但这两个三角板不全等,说明三角对应相等的两个三角形不一定全等。 学生分小组讨论,得出结论:证明两个三角形全等的条件至少有一条边,三个角对应相等的两个三角形不一定全等,三边对应相等的两个三角形一定全等,两边和它们的夹角对应相等的两个三角形一定全等,两边和其中一边的对角对应相等的两个三角形不一定全等,两角和它们的夹边对应相等的两个三角形全等,两个角和其中一个角的对边对应相等的两个三角形全等。 通过动手操作,使学生对三角对应相等的两个三角形不一定全等有更深刻的印象。 通过讨论、归纳,既有助于训练学生概括归纳能力,又有助于学生在归纳概括过程中把所学的三角形的判定方法条理化、系统化。 能力提高 如图:已知△ABC≌△A1B1C1,AD、A1D1分别是∠BAC和∠B1 A1 C1的角平分线。求证:AD= A1D1 师生共同分析后由学生书写解题过程,由一个写得较好的学生上黑板板书。 这是一道较难的题目,给学有余力的同学提供机会,便于他们更好地运用全等三角形的性质和判定解决问题。 小结 本节课你学习了什么?发现了什么?有什么收获?本节课还存在什么没有解决的问题? 在教师的引导下,回顾本节课对知识
的探究过程,提炼数学思想,掌握数学知识 帮助学生梳理知识内容,回顾自己在本节课中的收获、困难和需要改进的地方。 分层作业 巩固提高 必做题:教科书104页第5、6、11题 选做题:教科书104页第12题 通过分层练习,使每一个学生在数学上都得到不同的发展 《三角形全等的条件》(第5课时) 教 学 目 标 知识技能 1.掌握“斜边、直角边”条件的内容. 2.初步运用“斜边、直角边”条件证明两个直角三角形全等. 数学思考 使学生经历作图,比较证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力. 解决问题 会运用“斜边、直角边”条件证明两个直角三角形全等. 情感态度 通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性. 重点 掌握判定两个直角三角形全等的方法. 难点 熟练选择判定方法,判定两个直角三角形全等. 【教学过程设计】 问题与情景 师生行为 设计意图 活动1 问题 (1)舞台背景的形状是两个直角三角形,为了美观,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量,怎么办呢? (2)如果他带的测量工具只是一把卷尺时呢? (3)工作人员是这样做的,他测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 教师提出问题,引导学生回答. 学生分组讨论,得到不同的方法,教师引导并给予肯定,然后对工作人员提出的方法进行探究. 在本次活动中,教师应重点关注: (1)学生能否根据实际情况找出两个三角形全等的条件; (2)学生对已有知识掌握情况; (3)学生是否会观察图形,找出三角形全等的模型; (4)学生是否能积极的参与活动. 创设实际情景,激发探究欲望,明确探究方向,引入课题. 问题与情景 师生行为 设计意图 活动2 问题 任意画出一个Rt△ABC,使∠C=90°, 再画一个Rt△A?B?C?,使 ∠C?=90°,B?C?=BC,A?B?=AB(即使斜边和一条直角边对应相等) (1)你能画出满足条件的Rt△A?B?C?吗?应该怎样画? (2)把画好的Rt△A?B?C?剪下,放到Rt△ABC上.他们全等吗? . 教师先提问,明确探究任务,指导学生进行画图探究,获取“HL”的条件. 学生画图,再让学生发现存在的问题,最后给出正确的画法. 本次活动中,教师应重点关注: (1)学生是否在与同伴交流的基础上以小组为单位通过观察发现规律; (2)学生能否根据探究中发现的规律概括出结论“HL”; (3)在阐述结论时,学生的语言是否规范. 以学生画图为主线展开探究活动,注重“HL”条件的发生过程,和学生的亲身体验,从实践中获取“HL”条件,培养学生探索、发现、概括规律的能力.
设计理念
教师由过去知识的传授者转变为学生学习活动的设计者和组织者,引导学生在自学文本的基础上自主探究、合作交流,与学生零距离接触。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,从而营造一个平等的、和谐的、宽松的良好氛围进行学习。同时,教师注意点拨引导,发挥学生“一帮一”合作学习的优势,培养学生良好的学习习惯。
学情分析
认知分析:学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为学习全等三角形的有关内容作了准备。
能力分析:学生已初步具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。对于一小部分基础薄弱、自学能力稍差的学生要提供赏识性评价教学策略,给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。
基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。
知识分析
学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为本节学习做好了准备。同时本节的学习可以丰富和加深学生对已学图形的认识,为学习其他图形知识打好基础。特别是平移、翻折、旋转前后的图形全等是运用全等形的概念得出来的,从而起到巩固新概念的作用。另一方面,掌握这一结论,对学生的某些情况下确定全等三角形的对应元素有帮助。
教学目标:
识与技能
1.知道什么是全等形、全等三角形及全等三角形的对应元素;能找出两个全等三角形的对应角、对应边;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。
过程与方法
1、经历全等三角形概念的建构过程,经历观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应变和对应角的方法。
2、在图形变换的实际操作过程中发展学生的空间观念,培养学生的集合直觉。
情感态度与价值观
让学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验;在探究运用全等三角形性质的过程中感受到数学的乐趣。
教学重点
探究全等三角形的性质.
教学难点
掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。
教学方法
针对七年级学生的认知结构和心理特征,为了突出重点,突破难点,本课题的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导发现,合作探究”教学法为主,辅之直观演示、讨论交流,让学生动手操作,动脑思考,动口交流,动心关注。
学法指导
本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间。通过本课的教学,在教师的组织引导下,倡导学生自主学习、尝试学习、探究学习、合作交流学习。
教学资源
借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
教学评价
在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:(1)课堂提问;(2)练习反馈;(3)在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:(1)课堂提问;(2)练习反馈;(3)展示。既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
教学过程
一 创设情境,导入新课
(1)同一张底片洗出的同大小照片重叠在一起能重合吗?
(2)如果把这些图形叠合起来,会怎样呢?
(说明:能够完全重合的两个图形称为全等形)
(3)把全等图形用线连起来:
【教师活动】
1、提出问题(1)结合学生回答及章前图引出本章内容,板书课题。
2、出示问题(2)和(3),在学生思考并回答的基础上引出并板书节课题。
3、在本次活动中,教师应重点关注:学生注意力并及时评价学生的表现。
【学生活动】
1、按照要求依次进行观察猜想、操作确认。
2、回答老师提出的问题,参与对同伴表现情况的评价。
【设计意图】运用贴近学生生活的图案激发学生探究的兴趣。问题(1),引导学生从图形的形状与大小的角度去观察图形。图形全等在生活中大量存在,创设这样的问题情境,引起学生的有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究的欲望。
【媒体运用】
依次出示三个问题;动态展示相关问题的解答过程及结果,节时增效
二、诱导尝试, 探究新知
1、全等三角形概念教学
自学课本2-3页思考2以上的内容,(自学时间5分钟)回答下列问题
(1)什么是全等形?什么是全等三角形?请举例说明
(2)用硬纸板检验下列各图中的两个三角形是否全等?如果全等,试用符号语言表示。若不全等,请说明理由。
(3)把两个全等三角形叠放在一起,__________叫对应顶点,_____________叫对应边,__________________叫对应角。
(4)如图1,若△ABC ≌ △DEF,则AB的对应边是 .AC的对应边是 . BC的对应边是 ;∠A的对应角是 .∠B的对应角是 . ∠C的对应角是 .
(5)你能结合以上练习总结找全等三角形的对应元素的一般规律吗?
a.有公共边,则公共边为对应边
b.有公共角,则公共角为对应角
(对顶角为对应角)
c.最大边与最大边(最小边与最小边) 为对应边;最大角与最大角(最小角与最小角)为对应角
2、探索全等三角形的性质
提问:(1)全等三角形的对应边有什么关系?全等三角形的对应角有什么关系?(2)如图1,△ABC ≌ △DEF,请指出图中相等的线段和相等的角。
【教师活动】
1、出示自学提纲,提出要求,组织学生自学。
2、检查自学情况,相机板书全等形的、全等三角形的概念及对应元素找寻规律
3、结合学生回答,用课件动态展示相关问题的答案。
【学生活动】
1、按照要求自学课本内容,解答相关问题。
2、同桌合作完成问题(2),动手操作并互相讨论、探索,感知对折、旋转 、平移的两个三角形仍然全等。
3、独立完成问题(3)—(6),相互交流.
【教师活动】口头提出问题,课件演示叠合过程,相机板书性质。
【学生活动】思考教师提出的问题,观察演示过程,总结归纳全等三角形的性质,参与对同伴表现情况的评价。
【设计意图】
1、以学生活动为中心,充分发挥学生学习的主动性。
2、通过学生动手实践、分析、总结出图形变换的本质,加深对全等三角形概念的理解。
3、通过层层深入的设计问题,让学生一步步拨云见日,最终能找出两个全等三角形的对应角、对应边;
【媒体运用】
出示自学提纲;动态展示相关问题的解答过程及结果。
【设计意图】学会符号语言,使学生在动手实践的过程中理解全等三角形的性质。
【媒体运用】
呈现性质的图形及符号表示形式,增强直观性
三、变式训练,巩固新知
(一)选择填空
1、△ABC≌ △BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是( )
(A)6cm (B)5cm
(C)4cm ( D)无法确定
2、 在上题中, ∠CAB的对应角是(
)
(A)∠DAB (B) ∠ DBA (C) ∠ DBC (D) ∠ CAD
整体优化县域初中数学推导型概念课有效性策略研究
(二)解答下列各题
3、如右图,已知△ABC≌△DEC,B和E,A和D是对应顶点,说出这两个三角形中相等的边和角。
整体优化县域初中数学推导型概念课有效性策略研究
4、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边, ∠ ACD和∠BCE相等吗?为什么?
整体优化县域初中数学推导型概念课有效性策略研究
【教师活动】
1、课件呈现问题
2、根据学生回答,相机组织相互评价、矫正,并呈现解答过程。
[课件展示]1、依次展示问题。2、结合学生回答相机展示
巡视指导,师生互动,启发学生分析探索充分条件。
分组讨论,发表意见。
【设计意图】
本环节安排了两个梯次练习,其中题组一为概念辨析,旨在巩固全等三角形的性质及对应元素的确定方法;题组二是解答题,旨在检查学生能否从较为复杂的图形变换中检索出简单图形的能力,进一步加深学生对全等三角形对应元素的寻找能力,达到举一反三、触类旁通。
2、进一步强化了学生对性质的认识,又可以训练学生的发散思维,培养灵活运用知识的能力,增强学生的创新意识和创新能力。
【媒体运用】
呈现问题及及部分答案,验证学生解答过程,提高练习的时效性。
四、综合归纳,延展深化
通过这节课的学习,你有什么收获和体会?还有什么疑问吗?
【教师活动】
先引导学生自主小结的基础上,在学生小结的基础上进行概括小结:
【学生活动】
【设计意图】
使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。
【媒体运用】再现本节知识要点。
五、推荐作业,补充升华
必做题:
习题12.1 1 ,2, 3;
选做题:
1、已知⊿ABC≌⊿DEF,且∠A=52º,∠B=31º, ED=10cm, ∠F=∠C,求∠F的度数与AB的长;
2、已知⊿ABC≌⊿DEF,⊿DEF的周长32cm,DE=9cm,EF=12cm,且∠E=∠B,求AC的长;
3、尽量画出两个全等的三角形所拼接的图形,并尝试寻求这两个全等三角形的对应顶点、对应边、对应角。
【教师活动】
课件展示作业题
【学生活动】按照要求自主完成作业,及时弥补
【设计意图】
为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。
【媒体运用】PPT课件呈现选做题。
七、板书设计:
课题
一、概念
1、全等形
2、全等三角形
二、方法
1、全等三角形表示:⊿ABC≌⊿DEF
2、找对应元素的规律:
a.公共边 整体优化县域初中数学推导型概念课有效性策略研究 对应边
b.公共角 对应角 (对顶角为对应角)
c.大边(角)对大边(角);小边(角)对小边(角)
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号