当前位置:首页 > 教案教学设计 > 数学教案

分数比大小的简便方法

日期:2022-01-09

这是分数比大小的简便方法,是优秀的数学教案文章,供老师家长们参考学习。

分数比大小的简便方法

分数比大小的简便方法第 1 篇

一、分数除以整数 3422

÷3= ÷2= ÷3= ÷2= 57

310÷6= 56÷4=

37÷4= 58÷5=

89÷12= 13÷2=

11

12

÷11= 13÷3=

12÷4= 47÷8=

二、整数除以分数 6÷27= 4÷815

= 5 7÷

38= 36÷2740= 6 4÷25= 24÷89= 3 9÷19= 2÷110

= 3 11÷1115

12= 5÷14= 4 10÷

10

13

= 36÷94= 57710÷7= 911÷6= 57÷15= 45÷4= 514÷5= ÷12= 6÷56= 7÷57= 12÷75= 1÷47= 4÷25=

5

110

÷2=

5

6

÷10= 5

9

÷5= 35÷9=

10

13

÷1= ÷34=8÷1625=

÷75= ÷1625

= ÷45=

÷74=

三、分数除以分数

810937355

÷= ÷= ÷= ÷=

[1**********]

12471312

÷= ÷= ÷= ÷= 537421133

55555827÷= ÷= ÷= ÷= 687697106

1681125119÷= ÷= ÷= ÷= 2595477636

[1**********]05÷= ÷= ÷= ÷=

[1**********]139

三、分数混合运算

[1**********]121-× ×÷× ×(-) +-+ [1**********]333

[1**********]-1÷ 0×+1× -- (-)÷+ [1**********]7

[1**********]+×+ ×+× ÷×0.32 6-2.4÷ [1**********]159

10-(1-

11214531)÷ (-0.4)÷(+0.5) ×(-)- 223656415

[1**********]19×+÷ (5-÷)× (0.75+)÷÷0.4× 491525

1134×0.8+2÷4-0.8 0.25

⎛ ⎝1+57+12÷3⎫4⎪⎭⨯2

7

417 ×(125 × 34)

2006÷

20072008

3948⨯⎡⎢⎣1÷⎛ 3⎝4+1⎫⎤

3⎪⎭⎥⎦ 4836

6108÷(1-537142159)+8 9÷15+9×14

⎛ 5-1⨯2⎫⎪÷1

3÷⎡⎛1+1⎫⎛3⎫⎝643⎭4⎢⎣ ⎝162⎪⎭0⨯ ⎝1÷⎪⎤

62⎭

⎥⎦0 48⨯⎛ 5⎛⎝6+58-57⎫

12-16⎪⎭ 575⎫

1

⎝6+8-1⎪2⎭

÷

2 4

913+911

3+93

9+9139+9 23

2 47⨯58+37÷85

⎡⎢⎛31⎫⎤15

1⎣4- ⎝

5-33⎪⎭⎥⎦÷4 3⨯6÷16÷6

7274⎡⎛51⎫5⎤12⎛134⎫

÷⎢ -⎪÷⎥ ÷÷ ⨯÷ -⎪

5⎣⎝82⎭8⎦

35÷⎛ 1⎝4+4⎫5⎪⎭

0.75×57+27×0.75

34÷[3. 75⨯(1. 2-15)]

57÷13255+7⨯13

23x -1

5

x =1 939 14÷⎛ 58⎫

⎝3-13-13⎪⎭

÷5÷14 160. 6⨯234

4-0. 6÷112100÷⎡⎢⎣56⨯⎛ 3⎝7-3⎫⎤

8⎪⎭⎥⎦ 11

2x +32

⨯2=7 63⎝155⎭

615⨯17+815÷7 2. 42÷43

3+4. 58⨯4

+3÷4

5. 4⨯⎡⎢⎣1÷⎛ 94⎫⎤⎝10-5⎪⎭⎥⎦ ⎡⎢1⎣2-⎛ 22⎫⎤7⎝3-5⎪⎭⎥⎦÷10

x ÷(1-2

5

) =3. 6

1

16

x -4=603

5x -

55=612

5-

510x =83

255÷x =

321

x +x =

1⎛3⎫

x ⨯ 1-⎪=2÷

43

436

56+4x =12÷13

x +

57

16x =8

255+6x =910

x-59

8=10

815 X +512X = 57 X ÷3585 = 12×15

四、列式计算

⒈ 一个数的23

是64, 这个数的5

8是多少? 2。 数是多少?

⎝8⎭

10

57x -12x =6

7

12x=910

3X +13535 = 7 一个数的23等于120的14,这个

3.

13143

乘的积,减去,差是多少? 4. 一个数的5 10,这个数是多少? 345

五、算一算,比一比,你能发现什么?

88815144 ÷ ○ ÷ ○ ÷12○ 93958577 310311133 ÷ ○ ÷ =○ ÷21○ 1031034377

你的发现

六、解决问题

5

1、美术班有男生20人,是女生的,女生有多少人?

6

55

2、甲铁块重吨,相当于乙铁块的。乙铁块重多少吨?

612

3、食堂运来800千克大米,已经吃去

3

,吃去多少千克? 4

4、食堂运来一批大米,已经吃去600千克,正好吃去克?

3

,这批大米共多少千4

5、一种电脑现在比原价降低

2

,正好降低800元,这种电脑原价多少元? 15

分数比大小的简便方法第 2 篇

分数乘法过后,就是分数除法了。分数除法和分数乘法有不同点也有相同点。但分数除法其实最后依靠的还是分数乘法。分数除法和分数乘法基本组成一样,首先分数除法也分为分数除以整数分数除以分数和分数除以小数。

分数除以整数其实也非常的简单的,只要一看公式就会非常的简单。它的公式可以分为3部分:

分数除以整数公式

它的这三个式子光看式子是很难理解的,所以让我解释一下。第一个式子是整数除以分数,整数除以分数需要用到的是一个分数除法中很常见也很简单的方法“倒数”(后面会解释倒数为什么合理),只需要把分数的分母颠倒为分子,分子再颠倒为分母,再用整数乘以这个数就可以了。

第二个式子呢,也是整数除以分数,但是这个分数就不一样了,而这个不一样的改变使这个式子变得十分的有趣!在这个式子中,除数(也是那个分数)的分子是1,这说明什么呢?如果用倒数解决的话,整个式子就不是整数除以分数了!就变成了整数除以整数,因为分子是一的分数倒过来以后,就只剩下了分母(因为分母不能为1),所以是个整数。

第三个式子呢,就是分数除以整数了,但这个可比之前的好玩多了,因为他不是把分数除以整数的式子变成了整数乘整数的式子而是把分数除以整数的式子变成了分数乘分数的式子。因为整数倒过来就是以那个整数为分母的分数,而分子是一,这就把不会的知识“分数除法”变成了会的知识“分数乘法”。

接下来就是分数除以分数!这个其实如果你学会了倒数和分数除以整数,对你来说一点难度都没有。因为它基本上和分数除以整数没区别:

分数除以分数的公式

第一个式子,就是十分简单的倒数解决方法,把除数的分子和分母互换,再用被除数乘上这个数,就有结果了。在计算这类题时,最需要注意的就是不要把被除数也分子分母互换,只需要换除数的就好。

第二个式子就有趣了,被除数和除数的分子都是一的话该怎么计算?对,也用倒数。除数倒过来的话,就只剩分母了,因为分母不能为1,所以就只剩下原来的分母了,就是一个整数,式子就变成了一个分子是1的分数乘一个整数。

分数除以小数是一个在课上还没有学到的领域,但因为学完分数乘法之后的经验,很容易就可以总结出该怎么算。只需要把小数呢换成分数,再使用倒数或直接除。

分数除以小数公式

这个式子就相对而言比较简单了,因为只要把小数化成了分数就简单了,就变成了分数除以分数,前面都讲过了。

下面是个分数除法如何运算的总结脑图,有一些内容没有放到论文和脑图里,所以脑图仅供参考。

脑图

现在可以发现分数乘法和分数加法有关系。而分数除法则和分数减法有关系,为什么呢?因为分数除法的本质其实也就是分数的本质和除法的本质,所以8÷1/4,就求的就是8里面有几个1/4,所以一个麻烦一点的方法但可以解释它的本质的方法就是减法,用8不停的一直地减1/4,最后减去几个1/4就说明8里面有几个1/4。

不管怎么说分数乘除法和加减法都是有关系的,只要学会了分数加减法就,乘除法就很简单了。

分数比大小的简便方法第 3 篇

  本课是引导学生探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解答方法。在教学时我是从先把4个饼平均分给四人,每人可以分得几块?再把三个饼平均分给四人,每人分得几块?让学生分别列式。然后引导学生比较两个算式的结果。学生很自然就发现一个可以得到整数商,一个不能。这时我顺势引导学生:不能得到整数商的可以用什么数表示呢?自然的导出分数。我觉得这样处理,一方面可以让学生真正产生学习的需要,体会到用分数表示的必要性,另一方面可以感受数学来源于生活,又应用于生活。

  分数与除法关系的理解,是以具体可感的实物、图片为媒介,充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。

分数比大小的简便方法第 4 篇

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号