日期:2022-01-09
这是分数的简单应用教学后记,是优秀的数学教案文章,供老师家长们参考学习。
教学内容:
人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。
学情分析:
1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。
2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
教学目标:
1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。
3、使学生在学习分数的.意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。
教学重难点:
重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:
多媒体课件,答题纸,小棒。
教学过程:
师:你想到的这个数表示什么意思?
(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)
二、探究新知。
1、初步感受整体由“1个”变“多个”
(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?
(2)、现在你又想到了哪个数?它表示什么意思?
(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?
(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?
2.理解部分与整体的关系。
(1)课件出示六个苹果,动态演示平均分的过程。
学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)
(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)
3、回顾建模。
课件出示:
引导学生回顾总
结:我们不仅可以把一个完整的物体
或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。
三、动手操作,加深认识。
1、“均匀地分”。
(1)提出要求:老师给大家准备了12个苹果,
请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。
(2)生独立思考,动手操作。
(3)、汇报交流。
(4)对比提升。
课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。
2、“创新地画”。
(2)生独立思考,动手操作。
(3)、汇报交流,展示学生作品。
预设:因为都是把整体平均分成了2份,取其中的1份。
师:哪儿不同?
预设:总数不同,每份数也不同。
四、闯关游戏,加深理解。
第一关:“准确地拿”。
第二关:“独具慧眼”。
五、回顾反思,结束全课。
1、引导学生回顾反思:今天你有什么收获?
2、师给与评价
教学目的
简单应用题教案设计参考
1.使学生进一步掌握简单应用题的结构,能够根据四则运算的意义和题目中的数量关系正确选择解答方法。
2.通过教学,进一步提高学生分析和解答应用题的能力。
3.探索知识间的内在联系,激发学生的学习兴趣。
教学重点
掌握简单应用题的结构,正确解答简单应用题。
教学难点
掌握简单应用题的数量关系。
教学过程
一、基本训练。
1.口算。
2.2+3.57 1.2
1.4- +0.5 11.3-8.6
( + )12 (0.18+ )9 7.75- -
2.下面各题只列式不计算。
(1)六年级学生为灾区捐款,六年级1班捐款105元,六年级2班捐款98元。两个班一共捐款多少元?
(2)学校图书馆买来150本故事书,借给五年级1班48本,还剩多少本?
(3)农具厂每天能够生产56件农具,7天能够生产多少件农具?
(4)水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?
(5)成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?
(6)五年级有学生136人,其中 是女生,女生有多少人?
二、归纳整理。
揭示课题:今天我们就来复习这样的`简单应用题。(板书:简单应用题的整理和复习)
(一)教学例1:某工厂有男工人364人,女工91人。这个厂的男工和女工一共有多少人?
教师提问:这道题有哪几个已知条件?
问题是什么?
问题与已知条件有什么关系?
你为什么要这样回答?
教师总结:
这道题中,需要求的结果与两个已知条件直接相关。只要把两个已知数合并起来,就可以直接计算出结果。这是一道简单应用题。
(二)变式练习。
1.改变问题:根据例1中的两个已知条件,你还能够提出其他问题,编成简单应用题吗?
①男工比女工多多少人?
②男工人数是女工人数的几倍?
③女工人数是男工人数的几分之几?
2.改变条件:根据上面编出的应用题和列出的算式,你能够分别调换每一道题中的已知条件和问题,各编成两道不同的简单应用题吗?
①某工厂男工和女工一共有455人,男工有364人,女工有多少人?
②某工厂男工和女工一共有455人,女工有91人,男工有多少人?
③某工厂有女工91人,男工比女工多273人,男工有多少人?
④某工厂女工比男工少273人,女工有91人,男工有多少人?
⑤某工厂有女工91人,男工人数是女工人数的4倍,男工有多少人?
⑥某工厂有男工364人,女工人数是男工人数的 ,女工有多少人?
⑦某工厂男工人数是女工人数的4倍,男工有364人,女工有多少人?
⑧某工厂有女工91人,女工人数是男工人数的 ,男工有多少人?
教师提问:通过我们的编题,你发现了简单应用题的什么特点?你的收获是什么?
教师总结:从以上的编题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的。也就是说,都是可以由已知条件经过一步计算直接求出答案。
(三)复习已经学过的一些常见的数量关系。
分数的简单应用是在学生学习了分数的认识、比较分数的大小和分数计算的基础上而解决实际问题的内容。这节课从学生的认知规律出发,符合三年级学生的年龄特点。教师认真分析教材内容,把分数的意义、分数的计算和解决问题融为一体。把解决问题的方法潜移默化的渗透给学生。
1、激发兴趣,主动探究。
学生有了兴趣就会产生强烈的求知欲望,就能积极主动地参与活动,成为学习的主体。第一、课堂伊始创设有效情境(组建数学兴趣小组),激发学生兴趣。且整节课都在一个情境中,学生学习兴趣盎然,学习效果好。被动学习变主动学习。第二、教师抓住小学生好动的特点,充分利用操作材料,组织学生动手操作,通过摆一摆、画一画、算一算、说一说等活动,促使学生耳、口、手、脑等各种感官并用。教师参与到学生当中引导学生由浅入深逐步探究,营造了宽松和谐的学习氛围,激发了学生学习兴趣。
2、问题引导,落实目标。
紧紧围绕教学目标设计教学活动,教学中教师把学生当作研究者、发现者。课堂上教师以问题为引导,让学生自由地思考探究、操作交流。学生亲身经历数学知识的形成过程,经历知识从形象到表象再到抽象的过程。从中体验解决问题的思想和方法。例如:三分之一是女生,三分之一表示什么意思?三分之二是男生,三分之二表示什么意思?进一步理解分数的意义。再如:请你用自己喜欢的方式求出男、女生的人数,再以小组为单位和小组同学说一说你是怎么想的?通过交流的过程学生将图形、语言、算式三种表征进行有机结合,在解决问题的同时加深了对分数的理解。
3、大胆放手,能力培养。
《数学课程标准》强调:“要鼓励学生独立思考、自主探究,为学生提供积极思考与合作交流的空间。”本节课教师充分利用学生已有的知识经验,给学生提供自主学习和合作交流两种学习方式。给予了学生自己操作、主动探究的空间,学生真正的成为了学习的主人,真正的掌握了学习的主动权,真正把课堂还给了学生。学生在小组合作讨论、全体汇报交流时,思维相互碰撞,智慧相互启迪,有的'学生用小棒摆一摆,有的学生画一画,有的学生用算式计算,且算法多样。达到不同学生之间的资源共享,优势互补的目的,既培养了学生的合作意识,又培养了学生的探究能力。学生体验到成功的喜悦。
4、本节课抓住了学生的身边生活去学习数学,应用数学。
把教材的内容与现实紧密结合起来,符合学生的认知特点。同时也消除了学生对数学的陌生感。
通过本节课也看到了自己需要努力的方向。譬如时间安排前松后紧,有一点拖堂;教师语言还不够精炼。但今后的教育道路还很长,我会不断努力,每一节课都会与我的学生共同成长。
教学内容:
人教版三年级数学上册第八单元,教科书第100页例1及相应的内容。
学情分析:
1、在本单元前几课时的学习中,学生已经初步认识了几分之一和几分之几(基本上是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。
2、学生已经学习了把一个物体平均分成若干份,这样的一份或几份可以用分数来表示。本节课是要理解把许多物体看作一个整体,平均分成若干份,也可以用分数来表示这样的一份或几份。学生在学习中可能对单位“1”的理解存在一定的困难,特别是对把许多物体组成的一个整体看作单位“1”难以理解。因此,教学中应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时要通过学具操作,帮助学生建立单位“1”的概念。重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。
教学目标:
1、通过说一说,分一分,涂一涂,画一画等活动,让学生经历单位“1”由“1个”到“多个”的过程,知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
2、借助解决具体问题的活动,使学生能用简单的分数描述一些简单的生活现;发展学生的抽象概括能力、类比推理能力,发展学生的数感。
3、使学生在学习分数的.意义的基础上解决实际问题,感受分数与生活的联系,体验学习数学的乐趣。
教学重难点:
重点:知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。
难点:从分母和分子的意义这一角度理解“整体”与“部分”的关系。 教学准备:
多媒体课件,答题纸,小棒。
教学过程:
师:你想到的这个数表示什么意思?
(预设:平均分、分数线、分子、分母、分数的意义。师选择板书)
二、探究新知。
1、初步感受整体由“1个”变“多个”
(1)、用课件展示教材第100页的例1右侧图,让学生观察,说说看到了什么?
(2)、现在你又想到了哪个数?它表示什么意思?
(3)、师:涂色部分是四个正方形中的几份?这样的一份还能用分数表示吗?
(4)教师对学生的回答给与评价。根据学生的回答讲解:在这里,我们可以把这样的2份是这4个小正方形的几分之几呢?3份呢?
2.理解部分与整体的关系。
(1)课件出示六个苹果,动态演示平均分的过程。
学生观察图后集体交流(一共有6个苹果;平均分成了3份;每份有2个苹果)
(2)提出问题:如果把这6个苹果看成一个整体,的意思吗?(说清楚分母3表示什么?分子1表示什么?)
3、回顾建模。
课件出示:
引导学生回顾总
结:我们不仅可以把一个完整的物体
或者图形看成一个整体平均分,也可以把几个物体看成一个整体平均分。
三、动手操作,加深认识。
1、“均匀地分”。
(1)提出要求:老师给大家准备了12个苹果,
请你也来平均分一分,想一想可以用哪个分数,表示其中的1份或几份。拿出答题纸,分一分。
(2)生独立思考,动手操作。
(3)、汇报交流。
(4)对比提升。
课件出示所有的分法,追问:“都是1份,为什么用不同的分数来表示? 预设:因为平均分的份数不一样。
2、“创新地画”。
(2)生独立思考,动手操作。
(3)、汇报交流,展示学生作品。
预设:因为都是把整体平均分成了2份,取其中的1份。
师:哪儿不同?
预设:总数不同,每份数也不同。
四、闯关游戏,加深理解。
第一关:“准确地拿”。
第二关:“独具慧眼”。
五、回顾反思,结束全课。
1、引导学生回顾反思:今天你有什么收获?
2、师给与评价
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号