日期:2022-01-10
这是四年级加法运算定律教案,是优秀的数学教案文章,供老师家长们参考学习。
教学内容:
数学教科书第7册
教学目标:
1、知识技能目标:理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
理解并掌握加法交换律、结合律,能用字母来表示。
教学难点:
经历探索加法结合律和交换律的过程,发现并概括出运算律。
教学过程:
一、观察主题图,提出问题。
谈话:同学们,气候渐渐转凉了,学校组织了一些户外活动。看,同学们正在紧张训练呢!(出示情境图)
提问:从这张图片中,你获得了哪些数学信息?
请学生根据这些信息提出一些加法问题。
二、教学加法交换律。
1、列式计算,完成等式。
(1)学生独立列式计算。
(2)指名学生口头列式,教师相机板书。
(3)用等号连接。
2、观察发现。说说两道算式中发现的规律。
3、举例验证。
4、得出结论。
5、教师小结。
6、初步练习:
(1)填空: 96+35=35+□ 204+□=57+204
□+27=□+ 68 147+□=a+□
(2)357+218 用加法验算
三、学习加法结合律。
1、独立完成第三个问题,列式计算,得出等式。
2、补充算式,计算得到等式。
课件出示:
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22) (要求学生独立计算后填上符号)
4、观察发现。
出示要求:
(1)仔细观察这三组等式的左边和右边,你能找到哪些什么相同点?
(2)你还能找到什么不同点?
(3)从中你发现三个数相加,有什么规律呢?并试着举例验证你的猜想。
(学生观察思考后在小组内讨论完成,尝试叙说规律)
5、全班交流。
让学生自由说说发现的规律再自主举例,教师板书有关算式。
6、概括规律。
7、小结。
8、填空练习:(45+36)+64=45+(□+□) 560+(140+70)=(560+□)+□
18+(24+□)=(18+□)+32 (18+□)+b=18+(a+□)
四、巩固练习。
1、下面各题中分别运用了什么运算律?
82+0=0+82 47+(30+8)=(47+30)+8
(84+68)+32=84+(68+32) 75+(48+25)=(75+25)+48
2、请做的快的同学介绍介绍经验,从而发现可以选择算括号里加起来等于整百数的那道算式,那样比较简便。
3、选择结果是100的两个数。
五、课堂总结。
通过本节课的学习,你有什么收获?
六、课堂作业。
基础:
1、补充习题
2、拓展题
教学目标
知识与技能
1.通过观察发现,掌握加法交换律的意义。
2.学会用自己喜欢的方式表示加法交换律,初步感知代数思想。
3.会运用加法交换律验算加法。
过程与方法
1.经历加法交换律的应用过程,体验数学知识间的联系和它的广泛应用性。
情感、态度与价值观
让学生感受发现知识的快乐,激发学生的兴趣,感受数学与生活的联系。培养学生学数学、用数学的乐趣。
教学重难点
教学重点:理解并掌握加法的交换律。
教学难点:能根据实际情况,在计算式灵活应用加法运算律。
教学工具
多媒体、板书
教学过程
创设情境,探究新知
李叔叔准备骑车旅行一星期,他今天上午骑了40km,下午骑了56千米,李叔叔今天一共骑了多少千米?
(1) 理解题意
求李叔叔今天一共骑了多少千米,就是求上午和下午一共骑了多少千米?
用加法:40+56或56+40
师:今天我们就来学习一下加法运算的定律。
板书:加法运算定律
(2) 解决问题
40+56=96(km)或56+40=96(km)
(3) 观察算式,发现定律
两道算式的得数相同,所表示的都是李叔叔今天一天骑的路程,因此两道算式之间可用等号连接,即40+56=56+40
观察40+56=56+40,发现,等号左、右两边的加数相同,只是交换了位置,但结果不变。由此可以得出结论:交换加数的位置,和不变。
(4)验证定律
是否所有的加法算式交换加数的位置,和都不变呢?可以举例验证。如:
0+200=200 ; 200+0=200 所以 0+200=200=0
11+78=89 ; 78+11=89 所以 11+78=78+11
发现:任意两个数相加,交换加数的位置,和不变,这就是加法的交换律。
(5)用字母表示定律
在数学当中通常用字母表示定律,若用a,b分别代表两个加数,则加法交换律就可以表示为a+b=b+a(a,b代表任意数)。用字母表示更加直观、方便。
板书:加法交换律:a+b=b+a
归纳总结1:两个加数交换位置,和不变,用字母表示为:a+b=b+a。
随堂练习:
小红有24支水彩笔,小刚有16支水彩笔,小红和小刚一共有多少支水彩笔?
答案:24+16=40(支)或者16+24=40(支)
探究新知2:加法结合律
情境导入:
问李叔叔这三天一共骑了多少千米?
1. 理解题意
师:要求三天一共骑了多少千米,就是求第一天所骑的加上第二天再加上第三天所骑的所有路程是多少,列式:88+104+96
2. 解答:
方法一:按从左往右的顺序:
88+104+96
= 192+96
= 288(千米)
方法二:观察算式中96+104正好等于200,所以可以先把后两个数加起来,再加上他们的和。
即: 88+104+96
= 88+(104+96)
= 88+200
= 288(千米)
答:李叔叔这三天一共骑了288千米。
3. 发现规律
观察两种解题方法,发现:一是先把前两个数相加,再加上第三个数,方法二是先把后两个数相加,再和第一个数相加,他们的计算结果相同,因此,
可以写成等式(88+104)+96=88+(96+104)
归纳总结2:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这个叫加法结合律。
4. 用字母表示定律
如果用a,b,c表示任意三个数,那么加法结合律可以表示为:(a+b)+c=a+(b+c)
板书:加法结合律(a+b)+c=a+(b+c)
活学活用:
有三块布,第一块长68米,第二块长59米,第三块长41米,那么三块布一共有多长?
68+(59+41)
= 68+100
= 168(米)
答:三块布一共有 168米
探究新知3:加法中的简便运算
下面是李叔叔后四天的行程
1.理解题意
师:要想求李叔叔后四天还要骑多少千米,只要把后四天所有的路程加起来就行了,列式为:115+132+118+85
2.观察算式特点
师:同学们,仔细观察发现,115与85能凑成整百数,132与118能凑成整数,因此用加法交换律和加法结合律就能把式子改写为:
115+132+118+85
= 115+85+132+118
加法交换律 = (115+85)+(132+118)
加法结合律
= 200+250
= 450
3.解答
115+132+118+85
= 115+85+132+118
= (115+85)+(132+118)
= 200+250
= 450(千米)
归纳总结:
在加法算式中,当某些数可以凑成整十,整百数或者多个相同数时,运用加法交换率或者加法结合律改变式子的运算顺序,可以使运算更方便。
教学目标:
1、知识与技能:让学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程与方法:让学生经历“猜想----验证----结论”的过程发现并概括出运算律。
3、情感与态度:让学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:让学生经历“猜想----验证----结论”过程,发现并概括出运算律。
教学准备:活页练习题
教学类型:随堂课
教学过程:
一、加法交换律
(一)故事引入,得出猜想
1、讲故事
(同学们想听故事吗?老师今天给大家讲个《朝三暮四》的故事。)
古时候,有个老人养了一群猴子,这一天,老人对猴子说:“现在粮食不多了,要省着点吃。以后每天早上吃3个饼,晚上吃4个饼,怎么样?”猴子一听,怎么早上吃的比晚上还要少,不干,抗议!老人眼珠一转计上心头,马上改口说:“那么早上4个饼,晚上3个饼,好不好?”猴子一听早上多了一个饼,自己占便宜了,这才开心的答应了。
2、适设问
猴子占到便宜了吗?为什么?
3、巧引用
引:也就是什么没变,只是什么变了?(也就是猴子一天一共吃的饼个数没有变,只不过是早晚吃的个数换了换。)
4、活板书
早上吃3个饼,板书3,晚上吃4个饼,板书4,一共吃了3+4个饼,也就是7个饼。早上吃4个饼,晚上吃3个饼,一共吃4+3个饼也是7个饼,所以3+4=4+3。(猴子占到便宜了吗?)
5、细观察
观察等号两边的算式,你发现什么?(数不变,符号不变,和不变,位置交换)
6、得猜想
是不是任意两数相加,交换位置,和都不变呢?这只是我们的猜想,需要验证。怎样来验证呢?我们可以像这样举例子。
(二)验证猜想,得出结论
1、举实例
你能举出这样的例子吗?自备本上写一个。
谁先来?4+5=5+4 你怎么知道相等的?左边,4+5=9,右边5+4=9,所以两边相等。所以下面请你这样说:左边4+5=9,右边5+4=9,所以4+5=5+4。谁再来说?1+6=6+1。这些都是几位数相加的例子?还有别的例子吗?12+11=11+12,这个例子和上面的有什么不同?还有别的吗?100+22=22+100,这个例子又有什么不同。还有吗?我们就不说了,用……表示。
评价:同学们举的例子都很好,不但想到一位数加一位数的例子,还想到一位数加两位数,两位数加一位数等等,这样各种类型的例子越多,验证的猜想也就越可靠。
2、得小结
这时,我们通过验证就可以来下结论了,谁能说一说?
两数相加,交换加数的位置,它们的和不变。这叫做加法交换律。
3、想简写
用语言文字叙说比较麻烦,大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在自备本上试着写一写。教师巡视,让部分学生上台展示创意,并让学生解释说明。
4、得结论
看来,用符号、字母等表示就是简单!在数学上,我们统一用字母a、b来表示两个加数,可以写作a+b=b+a 这就是加法交换律,请大家读一读。
其实一年级你们就接触过加法交换律,看!数的分成,对吗?二年级也学过,笔算加法并交换加数位置来验算加法,是不是也是交换律?
二、加法结合律
过渡: 刚刚,我们研究了两个数相加,发现了交换律,告诉你哦,数学家们研究了三个数相加,也发现了一个很重要的定律呢,你们想知道吗?
1、出示定律
请你们自己读一读,你能理解吗?三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。
2、分析定律
我们一起来分析。“三个数相加”,懂吗?谁来举一个三个数相加的例子。简单点的。4+6+8。先把前两个数相加,再加第三个数,什么意思?也就是先算几加几?再加几?为了强调先算什么,老师在4+6外面加上括号。或者先把后两个数相加,再加第一个数,也就是先算?再加几?我们只要怎么办?在6+8外面加上括号就行了。和不变吗?我们要计算。左边先算4+6=10再加8等于18,右边先算6+8=14,再4加14等于18,所以(4+6)+8=4+(6+8)
3、观察发现
观察等号两边的算式,你发现什么?特别是什么没变?位置没变。
4、自由验证
那么是不是三个数相加,位置不变,先把前两个数相加再加第三个数,或是先把后两个数相加,再加第一个数,和都不变呢?这虽然是数学家验证的结论,但我们学习数学要抱着怀疑的学习态度去学,别人说的就一定对吗?只有自己验证了,你才能说这个结论是对还是错。
你该怎么样验证呢?举例子。
就近五人一组合作交流每人举一个例子其中一个人记录。注意一定要左右算一算,看是不是和不变。
5、汇报交流
谁先说?左边……右边……所以……。这是几位数相加的?还有别的吗?这个例子和前面的有什么不同?还有不同的例子吗?还有吗?我们用……表示
6、事例验证
同样的,我们也可以举出生活中的事例来证明。看,我们班男同学34人,女同学21人,后边还有听课的老师12人,问一共多少人?可以怎样算呢?我们可以先算男同学的人数和女同学的人数,再加老师的人数,也可以先算男同学的人数和老师人数,再加上女同学人数,还可以先算老师人数和女同学人数再加上男同学人数。虽然运算顺序变了,但是都是求总共人数,所以和不变。
7、得出结论
现在我们可以肯定的说,数学家的结论正确吗?请你读一读,看看大家这次读得懂吗?如果用a、b、c来表示这三个数,结合律怎么表示呢?谁来表示一下?
8、板书课题
今天我们发现的加法交换律和加法结合律我们书中的小朋友也发现了找出来读一读,看看和我们总结的一样吗?我们把加法交换律和加法结合律统称“加法运算定律”你们都掌握了吗?下边我就来考考你们。
三、巩固练习
1.下面各题中分别运用了什么运算律?(以手势进行判断,用手掌代表加法交
换律,拳头代表加法结合律。)
82+0=0+82
●+★=★+●
(84+68)+32=84+(68+32)
75+(48+25)=(75+25)+48
(注意引导学生发现第4小题是运用了加法交换律和加法结合律)
2. 填空练习。
(45+36)+64=45+(□十□)
560+(140+70)=(560+□)+□
18+(24+82)=(18+□)+□
小结:看来运算律真有用,可以使计算变得很方便,大家把加起来是100的两个数放到一起先加,这可真是个好办法。
3.那么这两题要怎么算更简便!
25+32+45 72+43+28
四。拓展延伸
著名数学家高斯以很快的速度算出了这样一个算式你行吗?
1+2+3+4+-------+99
五、全课总结:
通过今天的学习,你掌握了什么?分别说一说。
一、说教材
1、教学内容:人教版(义务教育课程标准实验教科书·数学)四年级下册第27—29页,练习五的第1~4题。主要包括:加法交换律和加法结合律。
2、地位作用:在前三年的学习中,学生对加法的交换律已有了一些感性认识。例如:在10以内的加法中,学生看一个图可以列出两道加法算式;在万以内的加法中,通过验算方法的教学,学生已经知道调换两个加数的位置再加一遍,加得的结果不变。在以前的教学中,教材对加法结合律也作了一些于孕伏。例如:学生通过0以内进位加法的凑10思路的学习,通过100以内加法中出现小括号的学习,对加法结合律也有了一些感性的认识。这些都是学习加法交换律和加法结合律的基础。本册教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的'感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算律的教学方法和学习活动可以迁移到乘法运算律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。
3、教学目标:
(1).引导学生探究和理解加法交换律、结合律。并能够用字母来表示加法交换律和结合律。
(2).培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
(3).使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
4、教学重难点:引导学生探究和理解加法交换律、结合律,能用字母来表示加法交换律和结合律。
5、教具准备:主题图
二、说教法学法
数学教学不仅要使学生获得数学知识,还要发挥教学内容的育人功能,使学生在多方面有所发展。教材希望学生在本单元的教学中认识运算律并发展初步的推理能力。为此,我设计了一条鲜明的教学线索,在发现运算律、总结运算律的时候,都给学生留出自主探索的空间,为学生安排了丰富、多样、有效的学习活动。我安排了“引出一个实例,进行类似的实验,在众多案例中概括用符号表达”的教学过程,引导学生充分地观察、实验、归纳、类比,获得正确的结论。
三、说教学程序
本节课预设五个环节进行教学。一、课前谈话、二、教学加法交换律、三、学习加法结合律、四、巩固练习、五、课堂总结。具体安排如下:
(一)、创设情境
1、谈话引入。
在我们班里,有多少同学会骑车?你最远骑到什么地方?
骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!
2、出示主题图。
引导学生观察主题图,并根据获得的信息提出问题:
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
3、教师根据学生提出的问题板书。
(设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。)
(二)、新授
1、学生在练习本上解答黑板上问题。
2、教师巡视,找出课堂上需要的答案,找学生板演,并集体订正。
3、引导学生观察第一组算式,发现规律。
问:⑴两个算式都表示什么?得数怎样?○里填什么符号?
40+56○56+40
⑵你能试着再举出几个这样的例子吗?(根据学生的举例,进行板书。)
⑶通过这几组算式,你们发现了什么?可以得出什么规律?请用最简洁的话概括出来。
⑷反馈交流。
两个加数交换位置,和不变。
4、揭示定律。
问:(1)你知道这条规律叫什么吗?(加法交换律)
(2)把加数换成其他任意的数,交换律还成立吗?
(3)怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?
(4)交流反馈,然后看看课本上的小朋友是怎么说的。
板书:a+b=b+a
(5)根据加法交换律对口令。
师:25+65=
8+64=
(6)完成课本第28页下面的“做一做”。
5、引导学生观察第二组算式,发现规律。
(1)比较:88+104+9688+(104+96)
为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)
出示:(88+104)+96○88+(104+96),怎么填?
(2)你能再举几个这样的例子吗?
如:(69+172)+28=69+(172+28)
155+(145+207)=(155+145)+207
问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)
(3)揭示规律。
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
(4)用符号表示。
如:(△+☆)+○=△+(☆+○)
(a+b)+c=a+(b+c)
(5)问:①用语言表达与用字母表示,哪一种更一目了然?
②这里的a、b、c可以表示哪些数?
(6)学生根据这两个运算定律,举一些生活中的例子。
(设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。)
(三)、巩固练习
1、P28的做一做。
2、P31的第1、4题。
(设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。)
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号