日期:2022-01-16
这是因数与倍数教学案例,是优秀的数学教案文章,供老师家长们参考学习。
【教学内容】人教版数学五年级下册。
【教学过程】
一、操作空间,初步感知。
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。 2.学生动手操作,并与同桌交流摆法。 3.请用算式表达你的摆法。
汇报:1×12=12,2×6=12,3×4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数。
(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数
(2)用因数和倍数说说算式l×12=12,2×6=12的关系。
(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2.求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:
可独立完成,也可同桌合作。 可借助刚才找出12的所有因数的方法。写出36的所有因数。
想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。 生1:1,2,3,4,9,12,36。 生2:1,36,2,18,3,12,4,9,6。生3:1,4,2,36,9,3,6,12,18。 (2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。 (3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3.求一个数的倍数。 (1)3的倍数有:,怎样有序地找,有多少个?
找一个数的倍数,用l,2,3,4??分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4.发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。
三、归纳空间,内化新知。 师生共同总结:
(1) 因数和倍数是相互的,不能单独存在。 (2)找一个数的因数和倍数,应有序思考。
四、拓展空间,应用新知。
1.15的因数有:,15的倍数有:。 2.判断。
(1)6是因数,24是倍数。( )
(2)3.6÷4=0.9,所以3.6是4的因数。 ( )
(3)l是l,2,3,4的因数。 ( )
(4)一个数的最小倍数是2l,这个数的因数有l,5,25。( )
4.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
5.举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
【评析】本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。
【反思】本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。二、适度引导,让探索有方向。引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。
在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。
教学内容九年义务教育人教版小学数学五年级下册第二单元“倍数和因数”。因数和倍数教学案例
教学目标:
1、 通过练习,使学生进一步理解倍数和因数,奇数和偶数,素数和合数的意义。
2、 使学生进一步掌握2、3、5的倍数的特征。
3、 让学生进一步体会探索数的一些特征和方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。
4、 让学生进一步体会到数学内容的奇妙、有趣,产生对数学知识的好奇心。
练习背景:
学生在练习之前已经初步掌握了倍数、因数、奇数、偶数、素数、合数的意义。掌握了求一个数的倍数或因数的方法及其特点。学生还在学了因数和倍数的基础上发现了2、5、3的倍数的特征,根据特征能判断一个数是否是2、5、3的倍数。学习完这些概念后,很有必要对这部分知识做个梳理与练习,使学生对这些概念有进一步的理解和掌握。所以教材安排了两课时的练习,第一课时练习有关倍数和因数,以及2、3、5的倍数的特征的知识。第二课时主要以练习素数和合数概念为主,以及这些概念的比较与区分。本课是在第一课时练习的基础上进一步的巩固提高练习。通过本课的练习,进一步帮助学生清晰理解各个概念,区别容易混淆的几个概念,提高学生的数学水平。
练习设计:
一、 谈话导入:
同学们,在本单元我们学习了很多概念,上节课我们针对有关倍数、因数的概念以及2、3、5倍数的特征进行了练习,除了这些我们在这单元还学习了什么概念呢?
(设计意图:在练习之前,引导学生对学习的旧知进行回顾,唤起学生对知识的主动回忆,我估计学生都能想到还学习了素数和合数这两个概念.)
指出:今天我们这节课主要就素数和合数概念以及前面的几个概念进行一个综合练习。
二、 基本练习:
1、仔细推敲,对号入座。
在2、15、6、10、45这些数中,谁是谁的因数,谁是谁的倍数?
2、自己举个例子说说谁是谁的因数,谁是谁的倍数?
3、说一说上面这些数中哪些是奇数,哪些是偶数?
(设计意图:这里我列出了5个数字,让学生直接说出谁是谁的.因数,谁是谁的倍数,相对于学生根据乘法或除法说出因数与倍数关系要稍微复杂和抽象了一些。这个练习主要帮助学生回顾梳理有关因数和倍数以及奇数和偶数的概念。)
过程及意图:
1、 先自己与同桌说一说,你能和同桌说的不一样吗?
2、 集体交流。
(设计意图:先让学生自己相互说一说,是给学生的思维一个缓冲,由于答案不是唯一的,这里不一定让学生说出全部,可以在集体交流时引导:“还有不一样的吗?”使其完整。教师不需要都板书,可以选择其中一种写一写。)
3、 自己再举例说明因数和倍数关系。
(设计意图:我设计这样一个开放性的练习,是为了让学生对因数和倍数的概念认识地更深入些。注意让多个学生说一说,学生在说一个数的因数或倍数时,提问:这个数的因数或倍数还有哪些?从而回顾因数与倍数的特点。)
【教学内容】人教版数学五年级下册P12一14,练习二。
【教学过程】
一、操作空间,初步感知。
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。
汇报:1×12=12,2×6=12,3×4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数。
(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗?
师根据学生的表达完成以下板书:
3是12的因数
12是3的倍数
4是12的因数
12是4的倍数
3和4是12的因数
12是3和4的倍数
(2)用因数和倍数说说算式l×12=12,2×6=12的关系。
(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2.求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。
学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:
①可独立完成,也可同桌合作。
②可借助刚才找出12的所有因数的方法。
③写出36的所有因数。
④想一想,怎样找才能保证既不重复,又不遗漏。
教师巡视,展示学生几种答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。
完成板书:描述式、集合式。
(3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3.求一个数的倍数。
(1)3的倍数有:——,怎样
有序地找,有多少个?
找一个数的倍数,用l,2,3,4……分别乘这个数。
(2)练一练:6的倍数有:
,40以内6的倍数有:一o
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4.发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?
根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。
三、归纳空间,内化新知。
师生共同总结:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的因数和倍数,应有序思考。
四、拓展空间,应用新知。
1.15的因数有:——,15的倍数有:——。
2.判断。
(1)6是因数,24是倍数。( )
(2)3.6÷4=0.9,所以3.6是4的因数。 ( )
(3)l是l,2,3,4……的因数。 ( )
(4)一个数的最小倍数是2l,这个数的因数有l,5,25。( )
4.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
5.举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
【评析】本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。
教学目标:
1、使学生结合具体情境初步理解倍数和因数的含义,初步理解倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:理解因数和倍数的含义。
教学难点:探索并掌握找一个数的倍数和因数的方法。
教学过程:
一、认识倍数和因数
1、操作活动。
(1)小黑板出示要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法表示出来。
(2)整理:全班交流,分别板书4×3=1212×1=126×2=12
3、学习“倍数”和“因数”的概念
(1)谈话:刚才同学们通过不同的摆法摆出了不同的长方形,而且还写出了3个不同的乘法算式,今天,我们就一起来研究乘法算式中,数与数之间的关系。(出示:倍数和因数)
(2)根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?
板书:12是4的倍数,12是3的倍数
4是12的因数,3是12的因数
(3)根据6×2=12,你能说出哪个数是哪个数的`倍数,哪个数是哪个数的因数吗?根据12×1=12呢?
(4)练一练:从3×6=1836÷4=9中任选一题说一说。
为什么4和9是36的因数?
4、小结:根据乘法或除法算式我们可以确定谁是谁的因数,谁是谁的倍数。为了方便,在研究倍数和因数时,所说的数一般指不是0的自然数。
二、探索找一个数的倍数的方法
1、谈话:在刚才的谈话中,我们知道了12是3的倍数,18也是3的倍数
提问:3的倍数只有这两个吗?
你还能再写出几个3的倍数?
你是怎样想的?
你能按照从小到大的顺序有条理地说出3的倍数吗?
你能把3的倍数全都说完吗?
可以怎样表示?
2、议一议:你有没有发现找3的倍数的小窍门?(在找3的倍数时,可以按从小到大的顺序,依次用1、2、3……与3相乘,每次乘得的积都是3的倍数)
3、试一试:
(1)2的倍数有
(2)5的倍数有
4、想一想:观察上面几个例子,你发现一个数的倍数有什么特点?
5、练一练:想想做做2
三、探索求一个数的因数的方法
1、提出问题:你能找出36的所有因数吗?
2、四人小组合作完成
3、交流整理找一个数的因数的方法。
4、试一试(既要一组一组地找,又要按次序排列)
15的因数
16的因数
5、比一比:根据上面几个例子,
你发现一个数的因数有什么特点?和同桌说一说
6、练一练:想想做做3
四、课堂总结。
1、这节课,你有什么收获?
五、巩固提高
1、判断
(1)12是倍数,3是因数
(2)6既是2的倍数,又是3的倍数。
(3)25以内4的倍数有:4,8,12,16,20,24……
(4)6的最小倍数是12,12的最小因数是6。
2、看谁反应快
游戏准备:学生按学号编成连续的自然数。(课前)
游戏规则:凡是学号符合以下要求的,请站起来,看谁反应快?
(1)谁的学号是5的倍数
(2)谁的学号是24的因数
(3)谁的学号是30的因数
(4)谁的学号是1的倍数
反思:
在教学过程中出现了一个问题:是在提问:“根据4×3=12,你能说出谁是谁的倍数吗?12是4的几倍?12是3的几倍?你能说出谁是谁的因数吗?”时,发现学生根本不能回答,本来以为学生在三年级的时候应该对这部分的内容有所了解,能顺利回答,但是在课后与三年级的教师交流后发现没有这方面的内容安排。由此,我想:新课程实施了五年,我其实还是门外汉,还不能很好地适应新课程的要求,新课程的教材编排具有连续性,而老版本经常是一个知识点安排在一起,注重深度。看来教师不光要关心自己年级的教材内容,还得知道整个教材编排体系,知道各个年级知识点之间的联系。这样才能更好地完成教学任务,使学生得到应有的发展而不是降低要求的发展或者是被强行提高要求的发展。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号