当前位置:首页 > 教案教学设计 > 数学教案

苏教版图形的放大与缩小教案

日期:2022-01-17

这是苏教版图形的放大与缩小教案,是优秀的数学教案文章,供老师家长们参考学习。

苏教版图形的放大与缩小教案

苏教版图形的放大与缩小教案第 1 篇

  1.小学设置图形变换内容的意义

  小学数学为什么要学习图形的平移、旋转和轴对称变换这部分知识?学习它们究竟有哪些价值?我们可以从两个方面来看:一是就其内容来说,图形的旋转是图形变换的一种形式。图形变换这部分内容是数学课程标准中新增加的知识,其改变了人们静止观察世界的传统方式,提倡从运动变换的视角研究几何问题。二是从小学生认识世界的角度来说,在实际生活中存在着许多与变换相关的现象,像机械传送带、升降的电梯、旋转的电风扇等,我们希望学生以一种数学的眼光去认识这些现象。

  2.图形的旋转在各学段的教学目标要求

  课标的三个学段里面都涉及了图形的旋转,那么这部分内容在不同学段当中的具体要求又是什么呢?其实课标中将图形的变换之图形的旋转这部分内容的具体目标分为了三个学段:第一个学段:结合实例感知旋转现象;第二个学段:了解图形旋转的相关内容, 能独立在方格纸上画出其图形旋转90度后所形成的图形;第三学段:探索并理解图形旋转的本质及其基本规律,根据题目要求作出旋转后的图形。这三个学段的目标设置是由易至难,是一个逐渐由直观思维上升至抽象理性思维的过程。这节课执教的图形的旋转就是继续和学生积累感性认识,形成初步的旋转概念,即能够识别旋转现象,会画图。纵观三个学段的教材,本学段内容其实起着一个承上启下的作用:既要关注新旧知识的连接点,用原有的旧知识推动四年级新知识的学习,又要为中学学习相关性质等打下基础。教学时我们需要把握好具体目标,除了立足教材,还需了解学生。

  3.对学生的学情分析

  (1)需要关注学生的知识构成: 三年级下期的学生已经接触过了图形的平移、旋转及轴对称变换,通过具体实例能够辨别这三种基本变换,但这种辨别是浅层次的,在认识上还处于一种初级阶段。

  (2)需要关注学生因年龄不同从而引起的思维变化特征:这个阶段的学生对事物感到新奇,从而会好动,他们的思维还是从具体形象的物象感知逐步向抽象思维过渡的一个阶段,所以他们在进行抽象思维时还具有相当大的主观性。

  4.图形的旋转教学的实施与反思

  为了达成教学目标,突破教学重难点,笔者将本节课分为三部分:

  第一,认识顺时针、逆时针的概念。

  第二,理解角度旋转的概念。

  第三,基本掌握简单图形的旋转变换方法。

  教学时,可利用教具——钟表,根据分针的.旋转规律,认识说明什么是顺时针方向(与分针走向相同的方向);然后让学生指出时针、秒针的旋转方向是什么方向,从感官上帮助学生建立顺时针旋转的基本概念;其次说明与指针走向( )的方向为( ),这个让学生自己尝试回答。举例强化训练学生对顺、逆时针方向的认识:大风车、生活小区门口转杆、 酒店旋转门、自行车脚蹬前进方向等,让学生结合前面学习的基本概念来分析并正确说出其运动方向特征。在描述过程中强调绕着某某旋转,帮助学生准确描述旋转现象的同时,可于潜移默化中渗透旋转中心知识。究竟旋转到哪里?需要一个准确的数字来描述,这样学生就容易理解旋转的角度了。至此,学生就可以利用旋转的三要素(旋转中心、旋转方向与旋转角度)正确地描述旋转现象了。之后开始本节课的难点教学:正确画出旋转后的图形。首先出示题目:你会把方格纸上的三角形绕点A逆时针旋转90度吗?对于有困难的学生,建议他们用书后剪下的实物三角形进行旋转操作,再把正确位置画下来,之后的交流很重要,是帮助学生正确掌握画旋转图形的方法。

  课后反思:通过这节课学习,学生不仅能正确描述一些旋转现象,也明白了不管是平移也好、旋转也罢,画变换后的图形,抓住对应点或对应边很重要,这是解决这类问题的关键。整个教学过程紧紧围绕着教学目标展开,为了达成目标,设置了教学重难点,为了攻破重难点,又将整个课堂教学分成了三个部分。从教学效果上来说,如何描述旋转现象是学生掌握旋转的关键要素,形成了一种将某图形绕着某点顺(逆)时针旋转( )度固定表达方式;学生在画将某简单图形旋转90度后的图形时,可以抓住关键线段先进行旋转,待画出对应线段后只要再连接另外的端点,即能达到目的。这些目标的达成将为学生以后第三学段学习旋转的基本性质打下基础,从而不断地发展了学生的空间观念。

  学生的知识生长如同花开,花开需要时间,需要教师尽心尽力地培育。我们尽力做好自己分内的事,便可静静等待学生知识之花盛开!

苏教版图形的放大与缩小教案第 2 篇

  一、游戏创设情景,导入新课。

  幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?

  师:希望每个同学都能拥有健康的身体,学会智慧地思考,在学习数学的过程中体验成功的快乐。转盘上指针的运动方式,在三年级我们已经有一定了解,叫旋转。请看大屏幕(转杆的关和合),在小区门口看过这个转杆吗?转杆的运动方式是(学生一起说)师:对了,转杆的打开和关闭也是旋转。今天我们一起来研究旋转。(揭示课题:旋转)

  二、探索线段旋转,体会旋转三要素

  1、对比研究转杆的运动

  (1)用手势来比划转杆的运动

  转杆的打开、关闭是旋转运动,今天我们就以这个为例来研究。举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

  (2)讨论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

  你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。哪些地方是不同的?同桌交流。

  不同点:这两次旋转的方向不同。你们知道转杆关闭的方向叫 (顺时针方向)为什么叫顺时针方向呢?(显示钟面是时针的运动)那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

  相同点:都绕着一个点在旋转,这个点就是旋转的中心点。都旋转了90度。

  (3)小结

  刚才我们学了旋转重要的三个特点:中心、方向、角度。其实所有的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有一定的角度,角度有大有小(显示旋转的图片时钟、折扇、风车)

  2.巩固练习

  刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?

  a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。(演示将一袋盐放入盘中)取出物品指针又是怎样旋转的呢?

  b、请看,老师这里还有一个转盘呢!谁愿意和老师合作玩“我说你转”的游戏:(老师提要求,学生转动转盘)

  请把指针从A点顺时针旋转90,转到( ), 再把指针从B点逆时针旋转90,转到( ) 。

  要想清楚地知道一个物体是怎样旋转的,就得把这三方面说清楚。

  结合三方面说说线段AB是怎样旋转的

  线段AB绕( )点( )时针旋转( )度。

  [为了帮助学生构建准确的概念,本环节从直观感知,动手演示,深化理解三个层次展开教学,并用动作的形象性来弥补语言描述的不足。学生在找一找、说一说、转一转中,深刻理解了按顺时针或逆时针方向旋转90度。

  三、探索图形旋转90度,培养空间观念

  刚才我们是把指针、转杆旋转90。你们知道吗?图形也可以旋转,下面我们就一起来研究如何把一个图形旋转90度。(把板书补充完整:图形的)课件出示例2:

  (1)问:谁知道“绕A点旋转”是什么意思?怎么转呢?(两种方向)

  (2)先来顺时针的方向转,转到90度一块喊停。你们怎么看出是饶着A点旋转了90度的。(旋转前的AC到旋转后的AC是90度,有谁是从不同的边看出的吗?AB到AB。还能从别的边看出吗?其实BC边也是旋转了90度,只不过用BC来判断不直观,有点困难。所以聪明的`你们都喜欢找AB、AC,AB、AC都是与中心相连的两条边。既好找又直观。

  (3)在来看逆时针旋转90度,老师想考考大家,愿意接受挑战吗?请你们先在头脑里想象出旋转后的形状。用手势来表示。请学生来比一比。如果让你画出来你会画吗?试一试,说说你是怎么画的。交流有什么方法可以画的又对有快吗?确定一条边旋转90度,连到哪里有点困难,看来要找两条边然后连起来。这两条边是随便的两条边吗?都联着A点。画一画,验证转一下。

  (5)巩固练习(“想想做做”2)

  刚才大家通过动手、动脑,把三角形旋转了90,并画出旋转后的图形,现在你们想试试其他图形吗?

  a、(课件出示题目)读题明确要求,请拿出课前准备的长方形纸片和三角形小旗,按要求在方格纸上旋转并画出旋转后的图形。

  b、谁愿意上来给大家介绍你的做法?(展示、交流、评价)

  c、(课件演示,图形旋转后画线,并标上弧线。)师:为了表示旋转的方向,还要在图形相对应的某一组对边之间画出弧线,标上箭头。(请学生在自己的图中标上旋转方向)

  [将图形在方格纸上旋转90是本节课的难点,所以在教学中不能急于求成,要给学生充分的探索时间与空间,从借助实物旋转到引导学生学会徒手旋转,设计了很多小环节,层层递进,使教学落到实处。既有独立操作又有合作探索,使学生在交流、展示、倾听和评价中逐渐探索出将图形在方格纸上旋转90的方法。从而突破了教学难点]

  四、思维拓展(“想想做做” 3)

  图形的旋转非常有趣,其中也有许多奥秘,请看下面三组图形。

  1、读题,明确题意

  2、先独立思考,再把你的想法告诉同桌。

  3、小组交流。(重点说几号图形绕哪个点按什么方向旋转多少度)

  4、学生汇报:课件演示。

苏教版图形的放大与缩小教案第 3 篇

  1、数学源自生活,应用于生活,数学无处不在,它与生活密不可分、相辅相成,图形的平移、轴对称、旋转是现实生活中广泛存在的现象。在本课教学中,我运用俄罗斯方块的游戏导入,基于学生的现实生活,既调动了学生学习数学的兴趣,又为后面引出平移、旋转、轴对称作铺垫。

  2、在本课中我注意调动学生的多种感官参与活动,促进学生主动发展。苏霍姆林斯基说过:儿童的智慧在手指间。在新授环节,至始至终以学生为主体,为学生提供学习素材,让学生通过看一看,想一想、动一动、做一做、讲一讲等活动,自主观察,合作探究、解决问题;使学生的主体地位体现得栩栩如生。让学生充分透彻、理解图形的变换过程,不仅会在实践中应用,而且让学生主动参与到教学活动中,并巧妙创设情境,激发学生的学习兴趣和求知_,引导学生积极思考、主动地获取知识。每一次活动结束,都能对学生的活动进行小节、概括。

  不足之处:本节课是学生在已有的基础上对图形变换的三种基本形式的综合应用,这需要学生具备一定的空间想象能力和灵活应用知识的能力,在活动中学生展现出了多种多样的变换方法,但也因为为了让学生充分展示这些方法,造成了无法按时完成教学任务。

苏教版图形的放大与缩小教案第 4 篇

地位作用:该内容是苏科版八年级上册第三章第一节,是在学习完平移、轴对称的基础上学习的又一种图形的变换,不仅为进一步研究图形的中心对称性打下良好基础,而且为学生提供处理几何问题的动态分析方法。

主要内容:通过生活实例,认识旋转概念;

通过探究活动,体会旋转性质;

通过观察操作,掌握旋转作图。

教学目标:

知识技能:通过具体实例认识旋转, 知道旋转的性质。

过程方法:经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。

情感态度:经历对生活中旋转现象的观察、分析过程,引导学生用数学眼光看待生活中的有关问题,体会知识的时代感;增强探究意识和研究兴趣;从图形的运动变化中学会发现图形的不变性质,体验发现的乐趣,养成感悟勤于实践、勇于探索的精神,增强学好数学的勇气和信心。

重点和难点:

重点:理解旋转的概念和性质。

难点:探究图形旋转的性质,多角度地理解图形旋转的发生过程。

教学方法

基于本节课是新授课的,采用探究发现式教学,通过引导学生观察分析,自主探索,对话交流等活动形式,“动手做数学”。

教学过程

第一环节 情境引入

情境1:带领学生做一个课前操(旋转操),“转转你的脖子,扭扭你的腰,绕绕你的胳膊,踢踢你的腿。”

情境2: 演示俄罗斯方块游戏。通过玩游戏,引导学生发现除了平移运动之外还有旋转运动,并引导学生列举出一些具有旋转现象的生活实例。

启迪学生,为了改变物体的位置,除了将物体移动一段距离,还可以将物体转动一定角度。

在两个情境刺激下指出,在初中阶段,我们主要研究平面内图形的旋转,引出课题“图形的旋转”。

第二环节 概念形成

1.建立图形旋转的概念

把满足“绕一个定点转动、沿某个方向转动一定角度”这两个特征的运动称为旋转。在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2通过打开圆规画圆的过程,让学生感受图形的旋转过程。

利用“旋转操”:水平伸直右臂,在身体所在平面内

(1)绕肘关节逆时针旋转90°,绕肩关节逆时针旋转90°;

(2)绕肩关节逆时针旋转45°,绕肩关节逆时针旋转90°;

(3)绕肩关节逆时针旋转90°,绕肩关节顺时针旋转90°。

重点突出确定图形旋转的几何要素:旋转中心、旋转角、旋转方向。

第三环节 性质探求

图形的旋转属于几何变换,基本问题是在该几何变换下原图形的哪些性质不变。为此,从观察图形的整体变换入手,考虑图形旋转前后的不变性质。

探求1、将一块三角尺内△ABC绕点C(大头钉钉住)按逆时针方向旋转到△的位置

思考旋转前、后三角形的哪些性质发生了改变?

哪些性质没有发生改变?

引导学生发现旋转前后图形的大小和形状没有

变化,改变的只是位置.由于图形是由点组成的,

所以引入对应点的概念并在AB上任取一点N,

找到它的对应点N′。

使学生理解“图形旋转时,意味着图形上每个点同时都按相同的方式旋转相同的角度”。

进一步引导学生结合图形,利用手中的学案,先独立探索,然后小组交流,通过“假设—检验—结论”这一性质探索过程获得旋转的3条性质。

探求2.将任意△ABC绕平面内任一点O转动任意的角度

探求3.归纳概括图形旋转的性质

(1)旋转前、后的图形全等,即旋转不改变图形的大小、形状。

(2)对应点到旋转中心的距离相等。

(3)每一对对应点与旋转中心的连线所成的角彼此相等。

4.巩固练习

(1)△A′OB′是△AOB绕点O按逆时针方向旋转得到的,已知∠AOB=20°, ∠A′OB=24°,AB=3,OA=5,则A′B′= ,OA′= ,旋转角= °。

(2)正方形A′B′C′D′是正方形ABCD按顺时针方向旋转45°而成的。

①AB=4,求S正方形A′B′C′D′= ,

②求∠BAB′= ,∠B′AD= ,

③连接BB′,求∠B′BA= 。

  

  

   

(1) (2)

第四环节 旋转作图

本着从简单到复杂的认知顺序,利用旋转的定义或性质作出旋转后的图形。

利用“旋转操”: 伸出左臂、握紧拳头,绕肩关节逆时针旋转100°。

1.画出将点A绕点O按逆时针方向旋转后100°的点A′

解:画图步骤为:

(1)连接OA ;

(2)作∠AOM =100°;

(3)在OM上截取OA′= OA。

则点A′就是点A绕点O按逆时针方向旋转100°后的点。

2. 画出将线段AB绕点O按逆时针方向旋转100°后的图形

分析:根据旋转的性质可以得到:线段AB绕点O按逆时针方向旋转100°,即线段AB上每个点同时都绕点O按逆时针方向旋转100°,而确定一条线段只要确定它的两个端点即可,所以只要分别画出点A、B绕点O按逆时针方向旋转100°后的对应点A′、B′,可以根据例1的画图方法分别画出点A、B的对应点A′、B′,最后连接A′B′,就得到所画的线段。

3. 画出将△ABC绕点O按逆时针方向旋转100°后的图形

分析:根据旋转的性质可以得到将△ABC绕点O按逆时针方向旋转100°,即△ABC上每个点同时都绕点O按逆时针方向旋转100°,我们知道要确定一个三角形只需确定它的3个顶点即可,所以只要分别画点A、B、C绕点O按逆时针方向旋转100°后的对应点A′、B′、C′,然后连接A′B′、A′C′、B′C′,就得到所要画的△A′B′C′。

教师:通过前面画点、线段、三角形绕某一个点旋转一定角度后的图形,能画出四边形、五边形等多边形绕某一个点旋转一定角度后的图形吗?你发现了什么规律?

学生:先画各个顶点旋转后的对应点,然后按一定的顺序连接各个对应点。

4.欣赏图案

问题:香港特别行政区区旗中央的紫荆花图案是由哪个图形经过怎样的变换产生的?

引导学生

5.利用方格纸画图:把这个图形绕点O旋转3次,每次旋转90度。

第五环节 反思升华

以一首富含旋转的诗结束

此外,引导学生从以下几个方面进行小结:

(1)你学到了哪些知识?

(2)有哪些收获?

(3)还有哪些疑惑?

第六环节 分层作业

A类:课本练习3.1第2题、习题3.1第3题;

B类:用学过的有关对称、平移、旋转知识为建国60周年设计一个图标;

C类:有趣的“费马点”。

费马点问题:法国著名数学家费马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小。人们称这个点为“费马点”。这是一个历史名题,近几年仍有不少文献对此进行介绍。世界各国在公路,自来水或煤气管道线路设计等方面都在应用这个方法。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号